
© 2010 UC Regents! 1!

Whatʼs In Rocks 5.4!

© 2010 UC Regents! 2!

Channel Bonding!

© 2010 UC Regents! 3!

Channel Bonding!

  I mean, how hard can it be?!
  With the Rocks Command Line, I figured we could do it with 3

existing commands!

I am trying to channel bond 4 gigabit NICs on the compute nodes to
(theoretically) improve performance, but am having some difficulty doing it correctly.
I can easily add the configuration by hand, but then if a nodere-installs, it would be lost.
I have experimented withthe rocks add hostinterface command, but cannot seem to
figure out how to tell it to enslave the other ethernets. What is the correct way to do this?

Hello all:
Has anyone done channel bonding before on Rocks? Detailed instruction would be helpful.

It was mentioned the other day that ROCKS does not support the bonding network cards (NICs).
I was a little confused by this as CentOS certainly does as a subset of RedHat Linux (or so it appears).
Would someone be kinda enough to fill me in on what aspect of ROCKS does not support bonding (BOND0, etc)?

So I decided to start the next step which is to channel bond each nodes 2 ethernet cards. I
got up to compute node 3. And decided to check things out with the previous nodes. For some
reason, rsh is now refusing connections from the headnode to the channel bonded compute
nodes. It was working on eth0 perfectly. What could cause this to happen?

© 2010 UC Regents! 4!

Channel Bonding!
 Created a new command to configure

channel bonding!

 Run the command:!

rocks list host interface compute-0-1
SUBNET IFACE MAC IP NETMASK MODULE NAME VLAN OPTIONS
private eth0 00:1e:4f:b0:74:ef 10.1.255.253 255.255.0.0 tg3 compute-0-1 ---- -------
------- eth1 00:10:18:31:74:43 ------------ ----------- tg3 ----------- ---- -------

rocks add host bonded compute-0-1 channel=bond0 interfaces=eth0,eth1 \
 ip=10.1.255.253 network=private

© 2010 UC Regents! 5!

Channel Bonding!
 The result!

 Can apply the change on the fly:!

rocks list host interface compute-0-1
SUBNET IFACE MAC IP NETMASK MODULE NAME VLAN OPTIONS CHANNEL
private bond0 ----------------- 10.1.255.253 255.255.0.0 bonding compute-0-1 ---- ------- -------
------- eth0 00:1e:4f:b0:74:ef ------------ ----------- tg3 ----------- ---- ------- bond0
------- eth1 00:10:18:31:74:43 ------------ ----------- tg3 ----------- ---- ------- bond0

rocks sync config
rocks sync host network compute-0-1

© 2010 UC Regents! 6!

Firewall Configuration via the
Rocks Command Line!
 But, for channel bonding to work, we

needed to make the firewall adapt to the
configured interfaces!

-A INPUT -i eth0 -j ACCEPT
-A INPUT -p tcp --dport 0:1024 -j REJECT
-A INPUT -p udp --dport 0:1024 -j REJECT

-A INPUT -i bond0 -j ACCEPT
-A INPUT -p tcp --dport 0:1024 -j REJECT
-A INPUT -p udp --dport 0:1024 -j REJECT

© 2010 UC Regents! 7!

Firewall Configuration via the
Rocks Command Line!
 Added a boat load of commands!
add appliance firewall {appliance} [action=string] [chain=string]
add firewall [action=string] [chain=string] [network=string]
add host firewall {host} [action=string] [chain=string] [network=string]
add os firewall {os} [action=string] [chain=string] [network=string]
close appliance firewall {appliance} [network=string] [protocol=string]
close firewall [network=string] [protocol=string] [service=string]
close host firewall {host} [network=string] [protocol=string] [service=string]
close os firewall {os} [network=string] [protocol=string] [service=string]
dump appliance firewall
dump firewall
dump host firewall
dump os firewall
list appliance firewall [appliance]...
list firewall {None}
list host firewall [host]...
list os firewall [os]...
open appliance firewall {appliance} [network=string] [param=string]
open firewall [network=string] [protocol=string] [service=string]
open host firewall {host} [network=string] [protocol=string] [service=string]
open os firewall {os} [network=string] [protocol=string] [service=string]
remove appliance firewall {appliance} [action=string] [chain=string]
remove firewall [action=string] [chain=string] [network=string]
remove host firewall {host} [action=string] [chain=string] [network=string]
remove os firewall {os} [action=string] [chain=string] [network=string]
report host firewall {host}

© 2010 UC Regents! 8!

Firewall Configuration via the
Rocks Command Line!
 The commonly used commands will be:!

 For example, to open up web access on a
public interface:!

rocks open host firewall {host} [network=string] [protocol=string] [service=string]

rocks close host firewall {host} [network=string] [protocol=string] [service=string]

rocks add host firewall {host} [action=string] [chain=string] [network=string]

rocks list host firewall [host]...

rocks open host firewall compute-0-0 network=public \
 protocol=tcp service=www

© 2010 UC Regents! 9!

The Private Network Doesnʼt
Have to be “eth0” !
 But to get the new firewall configuration

working, we had to break the “eth0 =
private network” relationship!

rocks list host interface compute-0-0 compute-0-1 compute-0-2
HOST SUBNET IFACE MAC IP NETMASK MODULE NAME
compute-0-0: private bond0 ----------------- 10.1.255.254 255.255.0.0 bonding compute-0-0
compute-0-0: ------- eth0 00:0e:0c:a7:57:d7 ------------ ----------- ------- -----------
compute-0-0: ------- eth1 00:19:b9:21:b8:b6 ------------ ----------- ------- -----------
compute-0-2: ------- eth0 00:10:18:31:74:7e ------------ ----------- ------- -----------
compute-0-2: private eth1 00:1e:4f:b0:72:2f 10.1.255.252 255.255.0.0 ------- compute-0-2
compute-0-2: ------- eth2 00:0e:0c:5d:7e:59 ------------ ----------- ------- -----------

© 2010 UC Regents! 10!

The Private Network Doesnʼt
Have to be “eth0” !
 Now when the “private” network cable

moves from one interface to another, the
“private” network configuration will follow
the cable!
 The interfaces will never be renamed!

© 2010 UC Regents! 11!

Login Appliance!

© 2010 UC Regents! 12!

Login Appliance!
 Administrators have asked for a node in

the cluster that is not the frontend where
users can login, develop and launch their
code!

 I mean, how hard can it be?!

© 2010 UC Regents! 13!

Login Appliance!

© 2010 UC Regents! 14!

Login Appliance!
 Created two new attributes:!

 submit_host!
•  One can submit jobs to the queuing system from

this host!
 exec_host!

•  Jobs can be executed on this host!

© 2010 UC Regents! 15!

Login Appliance!
 Login appliance:!

 submit_host = true, exec_host = false!
 Compute node:!

 submit_host = false, exec_host = true!
 Can set/unset the attributes for any host!

 Can easily make all tile hosts execution hosts!
 Can easily exclude specific hosts as queuing

system resources!

© 2010 UC Regents! 16!

Avalanche Installer
Retooled!

© 2010 UC Regents! 17!

Avalanche Installer Retooled!
 We went to Nebraska!

 We came back humbled!

© 2010 UC Regents! 18!

Avalanche Installer Retooled!
 Found several issues that limited

scalability!
 Some of the easier fixes made it into Rocks

5.3!
 Realized that we needed to get as much

traffic off the frontend as possible!

Avalanche Installer Retooled!

  vmlinuz, initrd.img!
  ~18 MB!

  ks.xml!
  ~0.3 MB!

  “stage 2 files”!
  ~200 MB!

© 2010 UC Regents! 19!

© 2010 UC Regents! 20!

Avalanche Installer Retooled!
 The Opportunity: distribute the “stage 2

files” with BitTorrent!

 Had to rewrite the client-side of
Avalanche in C!
 Which I loved!!

© 2010 UC Regents! 21!

Avalanche Installer Retooled!
 Added a “package predictor”!

  When a client asks for a package, the tracker returns
a list of the next 10 packages that the client will likely
ask for!

  Reduces the tracker load on the frontend by 10x!
 Only assign 3 clients for each package!

  Previous version sent back all the available clients
for a package!

  Reduces the tracker response message size for
large concurrent reinstallations!

Avalanche Installer Retooled!

© 2010 UC Regents! 22!

© 2010 UC Regents! 23!

Avalanche Installer Retooled!
  Can have multiple “trackers” and “package servers”!

  Previous version: only the frontend tracked and served
packages!

  Tracker assigns clients based on “least-recently used”!

  Group clients by “co-op”!
  A client will try to get a package from members of its “co-op”

first!
  Can set the “co-op” with an attribute!

•  Default co-op is the rack id!

© 2010 UC Regents! 24!

Graph Traversal Fixed!

© 2010 UC Regents! 25!

Graph Traversal Fixed!

 Original implementation had a
major bug!
  If x11 was false, “c” would be

omitted, but “e” would be included!	

<edge from=“b” cond=“x11”>
 <to>c</to>

</edge>

<edge from=“c”>
 <to>e</to>

</edge>

Rocks Graph Fixes!

© 2010 UC Regents! 26!

 Fix: prune the tree!
 stop traversing at “b” if

“x11” is false!

© 2010 UC Regents! 27!

Multiple DNS Zones!

Multiple DNS Zone support!
 Multiple subnets !
 Each subnet maps to a DNS zone!
 Serve DNS for multiple interfaces!
 Customize zone names!

•  Private network need not be “.local”!

 Examples!
•  Optiputer network - <hostname>.optiputer.net	
•  Local network - <hostname>.local	

© 2010 UC Regents! 28!

Multiple DNS Zones!

© 2010 UC Regents! 29!

rocks add network optiputer 192.168.0.0 255.255.0.0 \
 servedns=true dnszone=myri

rocks list network
NETWORK SUBNET NETMASK MTU DNSZONE SERVEDNS
private: 10.1.0.0 255.255.0.0 1500 local True
public: 137.110.119.0 255.255.255.0 1500 rocksclusters.org False
optiputer: 192.168.0.0 255.255.0.0 1500 myri True

rocks sync dns

© 2010 UC Regents! 30!

Updates!

© 2010 UC Regents! 31!

Software Update!
 Support for Rocks published updates!

 Patches!
 Security fixed!
 Rocks and/or CentOS packages!

 Not the same problem as general
software update!

rocks update!
1.  Downloads new packages from

ftp.rocksclusters.org for your release of Rocks!
2.  Runs any update shell scripts we provide!
3.  Removes any update XML files for Rolls you

donʼt have!
4.  Creates an Update Roll!
5.  Create an Update Yum Repository!
6.  Does a “yum update” on fronted using only this

repository!
© 2010 UC Regents! 32!

What About Compute Nodes?!
 You now have an Update Roll!

 Enable the Roll!
 Rebuild the distribution!

 Pick One!
 Re-install nodes!
 Run “yum update” on nodes!

© 2010 UC Regents! 33!

© 2010 UC Regents! 34!

“rocks run host” Retooled!

© 2010 UC Regents! 35!

“rocks run host” Retooled!
  Now 100% tentakel free!!

  Collate: prepend the name of the host on each line of the output!
  Delay: delay X seconds between command launches!
  Managed: only execute on “managed” nodes (e.g., not NAS

appliances)!
  A managed host has the attribute “managed” set to “true”!

  Stats: print how long it took to run each command!
  Timeout: terminate after X seconds!
  X11: set to ʻnoʼ to disable X11 forwarding!

rocks run host [host]... {command} [collate=string]
 [command=string] [delay=string]
 [managed=boolean] [stats=string] [timeout=string]
 [x11=boolean]

© 2010 UC Regents! 36!

Features Weʼre
Considering!

© 2010 UC Regents! 37!

Features Weʼre Considering!
 Console access to virtual compute nodes

from within a virtual frontend !
 Related:!

•  Allow users to power on/off VMs from within
virtual frontend!

 Multiple distribution support!
 Global/OS/Appliance/Host hierarchy

cleanup!

© 2010 UC Regents! 38!

Features Weʼre Considering!
 Roll “personalities”!

 A method to select several rolls by clicking
one checkbox!

 Making the SGE job queue data collection
more efficient!

© 2010 UC Regents! 39!

Features We Should
Consider?!

