Developing Rolls

Anoop Rajendra

© 2010 UC Regents 1

! I
@)

Two Questions

¢ How do you reliably add and configure
(complex) software in a cluster
environment

¢ How do you capture changes to your
system, and replicate it?

© 2010 UC Regents

What are Rolls?

& Software components that make up a
Rocks system

& Mechanism for delivery of packages and
configuration

¢ Rolls are the atomic unit in Rocks

+ Rolls are how you should be getting your
software onto a Rocks cluster

© 2010 UC Regents

Purpose of Rolls

& Capture expert knowledge and automate
it.

¢ Enable others to extend the system to
provide completely new functionality

& Make the clustered system reliable and
reproducible

& Backup of your software infrastructure

© 2010 UC Regents

Rocks Philosophy

¢ We've developed a “cluster compiler”
2 Source code + preprocessor + linker

2 XML framework + XML parser + kickstart
(Jumpstart for Solaris) file generator

& Think about “programming your cluster”
= Not “administering your cluster”

© 2010 UC Regents

Context of a Roll

© 2010 UC Regents

Normal RedHat Distribution

Parallel Code / WebFarm / Grid / Computer Lab

Linux Environment

Linux Kernel

End User

Applications

© 2010 UC Regents

it BEEERIBR R

| Parallel Code / WebFarm / Grid / Computer Lab |

| Base ' I Myrinet |

Base App
Roll Roll

© 2010 UC Regents

What’s inside a Roll?

¢ Binaries - RPM format
o Configuration data
¢ Installation Map

© 2010 UC Regents

Treasure Hunting

¢ The treasure you seek is a fully installed
and configured cluster

¢ What are the things you’ll need

© 2010 UC Regents

10

N
X

&
Y
of
L
C
29
=
O

Tells you the path you need to take

© 2010 UC Regents

11

Instruction set

Clues

1. Las Vegas restaurant promise To givethe ___ _ _ y
2. Which Clive Peter is licensed to sell infoxicating liquor? _ _ __ _— ———
3. 360 degrees of suffering.
Hint if your a fresher sk someone who isn't
4. Hard chocolate powder creates Americans stereotype.
5. Down the middie, 3rd fish down.— _ __ _—
6. How does Carling envisage us relaxing in the Piazza?
________ /.
7. T have graduated and the end is hear how can T live forever?

8. Which SU president was an ‘infractor child', that suffered from ‘rancid
filch rot' and was treated in ‘Hartford clinic?
9. How:many exferior walls does a detached Whitefields have?
10. After four o'clock; follow V's from.on high. Where do they lead? _ _ _
11, Look away. What-medieval alcohol is on display?

- 12. Dining has never been so self-explanatory.

’ 13. Ropes and fire disturb the sleepers, who left them where they lay?

[14, Now y—t;u o0 must leave them where they lay. What set of three:and ~
graup of four are within a casual stare, while standing in a metal square?
15, ?r_iaT\gular green; enclosing groovy sculpture - but how many wooden
frames are there to support-your frame from ifs view?~ ~

16. On the floor that freasure island belongs to, Adam At . s

broom cupboard. -

17. T think of a title, I swap the last fwo words and find it surrounded by

| those words. What are they surrounded by?

18. What-is the only surname that is repeated in the physics academic
staff? y 3

19. Upon-the clear blue sandy shore a collection of subjects collate.
20-Head to the crescent sea, from the port hole how many whales can you
e See?

21./522 is the sum of four numbers on what objects? Compute...

22. How many English litres left, along the top of the colour cascade?
Hint not through doors

If blanks are given the word/words enswer s! il
Look at the map for pesitional clues ta the Kac}r:i:\ fn'lfl ::: :v||<s"\:1kesr‘
TFhe location for all ¢lues is not given but remember, ;
All ¢ltes lead on from each other and are reasonably close to the last o
Dotted I|n2§ represent paths that can be followed g
All numeric answers should be written as words.

What to do at each point

in the map ?

© 2010 UC Regents

12

Resources

s

:',al®® /' € Small trinkets you

IS % /a e plckJupt 1jdlf()ng the way
g OOurSto ?Jsee Ieeﬂer

@ﬁfﬂ@

S 4 c/

Translate that to a Roll

¢ Graph file « Installation Map < Map

¢ Node Files < Configuration Data < Instruction
set

¢ RPM/Binaries < Resources

© 2010 UC Regents 14

Making your own Roll

© 2010 UC Regents 15

Creating a Roll Directory

¢ On a Rocks 5.3 system

cd /export/site-roll/rocks/src/roll
rocks create new roll valgrind version=3.5 color=orange
find valgrind/ -type f
valgrind/src/sunos.mk
valgrind/src/1inux.mk
valgrind/src/valgrind/Makefile
valgrind/src/valgrind/version.mk
valgrind/src/Makefile
valgrind/nodes/valgrind.xml
valgrind/Makefile
valgrind/graphs/default/valgrind.xml
valgrind/version.mk

© 2010 UC Regents

16

Part |: Packages

© 2010 UC Regents

17

Packages

¢ Rolls require packages to be in native OS
format
2 RPM for Linux
> PKG for Solaris

© 2010 UC Regents

18

Packages - Advantages

¢ Inspect software with native OS tools
+ Can install “by hand” using OS tools

& Tracking is easy — The system knows
about the package

© 2010 UC Regents

19

Packages - Disadvantages

¢ You have to make your software into a
package
> This only seems hard

¢ Package Mechanisms can sometimes
cause odd behavior

o Solaris PKG does not like
2 RPMS can have quirks

© 2010 UC Regents

20

Our Philosophy on Packages

& We use packages as a transport

¢ No configuration is done in the package
Y%post section

o This is what the Rocks node files are used for

& Stay away from explicitly creating “spec”
files

& Make is your friend (ours too)

© 2010 UC Regents 21

Make requirements

¢ For Linux, we support building only a
frontend node

o For Solaris, we support Solaris
Development appliance
¢ Faith

> There is large set of included make rules that
allow us to quickly package software

> You have to trust what the system is doing.

© 2010 UC Regents 22

Different Ways For Packaging
From Source

¢ Build software by hand, then point
rocks create package

at the directory
+ Build an RPM Spec file

¢ Use the Rocks-supplied Make
Infrastructure

© 2010 UC Regents

Valgrind — A Working Example

+ Using the valgrind example.

cd valgrind/src/valgrind
wget —q

¢ Edit version.mk to read

cat version.mk

PKGROOT = /opt/valgrind
NAME = valgrind
VERSION = 3.5.0

RELEASE =1
TARBALL_POSTFIX = tar.bz?2

¢ The only thing that needed changing was
the last line from “.tgz” to “tar.bz2”

© 2010 UC Regents 24

Valgrind — A Working example

¢ Now Inspect the Makefile

¢ Three lines make all the difference in the

world
REDHAT.ROOT = $(CURDIR)/../../

-include $(ROCKSROOT)/etc/Rules.mk
include Rules.mk

¢ Never ever change these lines

> (Unless you’re doing something real fancy)
* (which you shouldn’t be in the first place)

© 2010 UC Regents

25

Valgrind — A working example

¢ A really simple Maketfile
¢ Three targets
2 build, install, clean
¢ “build” runs “configure; make”
¢ “install” runs “make install”

¢ “clean” can be to cleanup after yourself in
the build directory

- strictly optional but recommended

© 2010 UC Regents 26

Valgrind — A working example

¢ One small change to Makefile
& Since tarball is “tar.bz2” change

gunzip —-c’ to “bzcat”

¢ Run
gmake pkg

¢ “gmake” compiles on both Linux and
SunOS

¢ “pkg” creates RPM on Linux and PKG on
SunOS

© 2010 UC Regents 27

Do it!

[root@aurora valgrind]# 1ls

graphs Makefile nodes src version.mk

[root@aurora valgrind]# cd src/valgrind/

[root@aurora valgrind]# gmake pkg 1>build.log 2>&1 </dev/null &

[1] 18813

[root@aurora valgrind]# 1ls

_arch Makefile rocks-version.mk Rules-11inux.mk Rules-
scripts.mk valgrind.spec.mk

build.log _0S Rules-install.mk Rules.mk

valgrind-3.5.0.tar.bz2 version.mk

_distribution python.mk Rules-linux-centos.mk Rules-rcfiles.mk
valgrind.spec

[root@aurora valgrind]# cd ../..
[root@aurora valgrind]# 1ls

BUILD graphs Makefile nodes RPMS SOURCES SPECS src SRPMS version.mk

© 2010 UC Regents

28

find RPMS/ -type f
RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm
[root@aurora valgrind]# rpm -qip RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm

Name : valgrind Relocations: (hot relocatable)

Version : 3.5.0 Vendor: Rocks Clusters

Release : 1 Build Date: Thu 03 Jun 2010
09:25:24 AM PDT

Install Date: (hot installed) Build Host:
aurora.rocksclusters.org

Group : System Environment/Base Source RPM:
valgrind-3.5.0-1.src.rpm

Size : 57700775 License: University of
California

Signature : (hone)

Summary : Tool for finding memory management bugs in programs

Description :

Valgrind i1s a tool to help you find memory-management problems in your
programs. When a program is run under Valgrind's supervision, all
reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted. As a result, Valgrind can
detect a lot of problems that are otherwise very hard to

find/diagnose.
© 2010 UC Regents 29

Part Il: The Map

© 2010 UC Regents

30

Install Rocks

Base Graph

Basic Instructions that
define all Rocks Appliances

Rolls have packages and
graphs

© 2010 UC Regents

........

31

()

© 2010 UC Regents

-t

-t

32

Frontend > = ~ =
Root ==
¢ Traverse a graph to build up a S [d—= "=
kickstart file (done at kickstart -
time)
¢ Flexple /-
o Easy to share functionality - =
between disparate node types i & _ o o
Compute > ': -\ =
Root = | =\= =

© 2010 UC Regents | 33

Use Graph Structure to Dissect
Distribution

¢ Use ‘nodes’ and ‘edges’ to

build a customized kickstart @
file
kickstart file ﬁ

¢ Nodes contain portion of
2 Can have a ‘main’, ‘package’
and ‘post’ section in node file

¢ Edges used to coalesce node
files into one kickstart file

© 2010 UC Regents 34

Why We Use A Graph

¢ A graph makes it easy to ‘splice’ in new nodes

¢ Each Roll contains its own nodes and splices
them into the system graph file

© 2010 UC Regents

35

Graph Edges: <edge>

¢ <edge> attributes

> from
* Required. The name of a node at end of the edge
<edge from="base” to="autofs”’/>

=3 (0]
- Required. The name of a node at the head of an edge
o arch

» Optional. Which architecture should follow this edge. Default is
all.

¢ In 5.3 edges can have conditionals based on attributes

© 2010 UC Regents 36

Graph Edges

<edge from="security-server” to="“central’/>

<edge from="“client’>
<to arch="i386,x86_64">grub-client</to>

<to>autofs-client</to> n.
<to>installclass-client</to> x86_64
</edge>

© 2010 UC Regents

grub-client

37

Graph Ordering

Added recently to give us control over when node <post>
sections are run

<order head="database">

<tail>database-schema</tail>
</order>

database node appears before database-schema in all kickstart
files.

Special HEAD and TAIL nodes represent “first” and “last” (post sections

that you want to run first/last)
<order head="installclass” tail="“HEAD”/> BEFORE HEAD
<order head="TAIL” tail="postshell”/> AFTER TAIL

© 2010 UC Regents

38

Graph Ordering: <order>

& <order> attributes
= head

« Required. The name of a node whose <post> section will
appear BEFORE in the kickstart file.

o tall

* Required. The name of a node whose <post> section will
appear AFTER in the kickstart file.

<order head="grub” tail="grub-server’/>

o arch
- Optional. Which architecture should follow this edge.
Default is all.

© 2010 UC Regents

39

Valgrind Example: Connecting
into the graph

vi graphs/default/valgrind.xml (and add:)

<edge from="base">

<to>valgrind</to>
</edge>

This tells us that Valgrind should be on all
appliances.

© 2010 UC Regents 40

Valgrind — A working Example

Profile Graph

© 2010 UC Regents

41

Part lll: Instruction set

© 2010 UC Regents

42

Node XML Files

& We use XML files to define the nodes In
the graph
> What packages to install
> What to do at <post> installation

¢ We also use XML files to define the
graph structure

© 2010 UC Regents

43

<package> Tag

¢ <package>valgrind</package>

> Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ‘valgrind’.

¢ <package arch=“x86_64">valgrind</package>
> Only install this package on x86_64 architectures

¢ <package arch=“1386,x86_64”>valgrind</package>
> Will install this package on both i386 and x86_64

© 2010 UC Regents

44

Convention

¢ <roll>-server.xml

> Things you install and configure only on
Frontends

¢ <roll>-client.xml

> Things you install and configure only on
“client” nodes (eg. Compute, NAS, VM-
containers, ...)

¢ <roll>-common.xml
> Things installed everywhere

© 2010 UC Regents

45

Where the art is: <post>

& Package Creation ranges from trivial to
not-so-trivial
+ Defining where packages go, some on

this appliance, some on that.
Straightforward

+ But, the post section ...

© 2010 UC Regents

46

Nodes Post Section

o Scripts have minimal $PATH (/bin, /usr/bin)
¢ Error reporting is minimal
> Follow “Day in the Trenches” presentation by Greg Bruno

¢ Not all services are up. Network is however.

= Order tag is useful to place yourself favorably relative to other
services

¢ Can have multiple <post> sections in a single node

© 2010 UC Regents

47

Nodes XML Tools: <post>

& <post> attributes
o arch
- Optional. Specifies which architectures to apply package.

o arg

+ Optional. Anaconda arguments to %post

--nochroot (rare): operate script in install environment,
not target disk.

--interpreter: specifies script language

<post arg="--nochroot --interpreter /usr/bin/python”>

> Arbitrary Attributes - In 5.3 most tags can have
conditionals based on attributes

© 2010 UC Regents

48

Post Example: PXE config

<post arch="x86_64,i386">
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name="/tftpboot/pxe../default”>
default ks
prompt 0
label ks

kernel vmlinuz

append ks inird=initrd.img......
<ffile>
</post>

for an x86_64 machine:

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF

mkdir -p /tftpboot/pxelinux/pxelinux.cfg

...RCS...

cat > /tftpboot/pxe../default << EOF
default ks

prompt 0

EOF

..RCS...

© 2010 UC Regents 49

Nodes XML Tools: <file>

¢ <file> attributes

2 name

« Required. The full path of the file to write.
> mode

« Optional. Value is “create” or “append”. Default is create.
> owner

« Optional. Value is “user.group”, can be numbers or names.
<file name="/etc/hi” owner=“daemon.root”>

> perms

« Optional. The permissions of the file. Can be any valid “chmod” string.
<file name="/etc/hi” perms="a+x">

© 2010 UC Regents

50

Nodes XML Tools: <file>

& <file> attributes (continued)

o vars

- Optional. Value is “literal” or “expanded”. In literal (default), no
variables or backticks in file contents are processed. In
expanded, they work normally.

<file name="/etc/hi” vars=“expanded’>
- The current date is "date’

<ffile>
> expr

-+ Optional. Specifies a command (run on the frontend)
whose output is placed in the file.

<file name="/etc/hi” expr="/opt/rocks/dbreport hi’/>

© 2010 UC Regents 51

Fancy <file>: nested tags

<file name="“/etc/hi”’>

Rocks release:
<eval>

date +"%d-%b-%Y"
echo *”

cat /etc/rocks-release
</eval>

<[file>

...RCS checkin commands...
cat > /etc/hi << ‘EOF’

Rocks release:
13-May-2005

Rocks release 4.2.1 (Cydonia)

EOF
...RCS cleanup commands...

© 2010 UC Regents

52

A Real Node file: ssh

<kickstart>
<description>
Enable SSH
</description>

<package>openssh/package>

<package>openssh-clients</package>

<package>openssh-server</package>

<package>openssh-askpass</package>
<post>

<file name="/etc/ssh/ssh config">

Host *
CheckHostIP no
ForwardX1l1 yes
ForwardAgent yes
StrictHostKeyChecking no
UsePrivilegedPort no
FallBackToRsh no
Protocol 1,2

</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

© 2010 UC Regents

53

Valgrind — A working example

¢ In our case, Iit’s so simple we don’t have
to change the node file

¢ Inspect the node file, in any case

<kickstart>
<package>valgrind</package>
<package>roll-valgrind-usersguide</package>
</kickstart>

© 2010 UC Regents 54

Roll Building

gmake roll 1>build.log 2>&1 </dev/null &

[1] 3627

[root@aurora valgrind]#

[root@aurora valgrind]#

[1]+ Done gmake roll > build.log 2>&1 < /dev/null
[root@aurora valgrind]# 1s valgrind-3.5-0.x86_64.diskl.1iso
valgrind-3.5-0.x86_64.diskl.iso

[root@aurora valgrind]# rocks add roll valgrind-3.5-0.x86_64.diskl.1iso
Copying valgrind to Rolls..... 39934 blocks

[root@aurora valgrind]#

*And you’re done

© 2010 UC Regents

55

To Re-iterate

Valgrind

Application

© 2010 UC Regents 56

Configuration

Information

© 2010 UC Regents

57

Configuration
Information

Valgrind

© 2010 UC Regents

THE ROLL

58

How does it fit In?

Parallel Code / WebFarm / Grid / Computer Lab

e v |
ERE

Base

Myrinet

PVFS
O

Base
Roll

App
Roll

© 2010 UC Regents

Valgrind
Roll

59

How does it fit In?

00©000000000 ® 00

® F ° @
’ sl o s mﬁb \“‘
® @ |
’J_‘

ol =
- .

@ w@owooQO@

'wm:
N
nm

96 66 E0I80IEI0EEEOOeE8088 @o@l@

od“ooooooo@ diu@ coe ocooo@o@@ o b @ @6
e ddobb 0 @e oot

1
@ soc® =

)

How does all this help you?

Roll mechanism is the recommended way
of deploying software on a Rocks cluster

¢ It fits into the framework of Rocks
¢ It’s reproducible
¢ It scales

© 2010 UC Regents 61

Summary

¢ Look at the Rocks Rolls for examples.

+ Rolls are not difficult, Understanding what
IS going on under the covers helps
demystify

¢ Some software is more challenging than
others

¢ Test. Test. Test.

© 2010 UC Regents 62

