
Developing Rolls!

Anoop Rajendra!

© 2010 UC Regents! 1!

Two Questions!
 How do you reliably add and configure

(complex) software in a cluster
environment!

 How do you capture changes to your
system, and replicate it?!

© 2010 UC Regents! 2!

© 2010 UC Regents! 3!

What are Rolls?!
 Software components that make up a

Rocks system!
 Mechanism for delivery of packages and

configuration!
 Rolls are the atomic unit in Rocks!
 Rolls are how you should be getting your

software onto a Rocks cluster!

Purpose of Rolls!
 Capture expert knowledge and automate

it.!
 Enable others to extend the system to

provide completely new functionality!
 Make the clustered system reliable and

reproducible!
 Backup of your software infrastructure!

© 2010 UC Regents! 4!

5!

Rocks Philosophy!

 Weʼve developed a “cluster compiler”!
 Source code + preprocessor + linker!
 XML framework + XML parser + kickstart

(Jumpstart for Solaris) file generator!

 Think about “programming your cluster”!
 Not “administering your cluster”!

© 2010 UC Regents!

© 2010 UC Regents! 6!

Context of a Roll!

© 2010 UC Regents! 7!

Normal RedHat Distribution!

© 2010 UC Regents! 8!

Distribution Based on Rolls!

© 2010 UC Regents! 9!

Whatʼs inside a Roll?!
 Binaries - RPM format!
 Configuration data!
 Installation Map!

© 2010 UC Regents! 10!

Treasure Hunting!
 The treasure you seek is a fully installed

and configured cluster!
 What are the things youʼll need!

© 2010 UC Regents! 11!

Map!

Tells you the path you need to take!

© 2010 UC Regents! 12!

Instruction set!

What to do at each point!
in the map ?!

© 2010 UC Regents! 13!

Resources!

 Small trinkets you
pick up along the way

 Just to keep
 Or to use later

© 2010 UC Regents! 14!

Translate that to a Roll!
 Graph file ⇔ Installation Map ⇔ Map!
 Node Files ⇔ Configuration Data ⇔ Instruction

set!
 RPM/Binaries ⇔ Resources!

© 2010 UC Regents! 15!

Making your own Roll!

Creating a Roll Directory!
 On a Rocks 5.3 system!

# cd /export/site-roll/rocks/src/roll	
# rocks create new roll valgrind version=3.5 color=orange	
# find valgrind/ -type f	
valgrind/src/sunos.mk	
valgrind/src/linux.mk	
valgrind/src/valgrind/Makefile	
valgrind/src/valgrind/version.mk	
valgrind/src/Makefile	
valgrind/nodes/valgrind.xml	
valgrind/Makefile	
valgrind/graphs/default/valgrind.xml	
valgrind/version.mk	

© 2010 UC Regents! 16!

Part I: Packages!

© 2010 UC Regents! 17!

Packages !
  Rolls require packages to be in native OS

format !
  RPM for Linux!
  PKG for Solaris!

© 2010 UC Regents! 18!

Packages - Advantages!
 Inspect software with native OS tools!
 Can install “by hand” using OS tools!
 Tracking is easy – The system knows

about the package!

© 2010 UC Regents! 19!

Packages - Disadvantages!
 You have to make your software into a

package!
 This only seems hard!

 Package Mechanisms can sometimes
cause odd behavior!
 Solaris PKG does not like “_”!
 RPMS can have quirks!

© 2010 UC Regents! 20!

Our Philosophy on Packages!
 We use packages as a transport!
 No configuration is done in the package

%post section!
 This is what the Rocks node files are used for!

 Stay away from explicitly creating “spec”
files!

 Make is your friend (ours too)!

© 2010 UC Regents! 21!

Make requirements!
 For Linux, we support building only a

frontend node!
 For Solaris, we support Solaris

Development appliance!
 Faith!

 There is large set of included make rules that
allow us to quickly package software!

 You have to trust what the system is doing. !

© 2010 UC Regents! 22!

Different Ways For Packaging
From Source!
 Build software by hand, then point!

# rocks create package 	
at the directory!

 Build an RPM Spec file !
 Use the Rocks-supplied Make

Infrastructure!

© 2010 UC Regents! 23!

Valgrind – A Working Example!
 Using the valgrind example.!
# cd valgrind/src/valgrind	
# wget –q http://valgrind.org/downloads/valgrind-3.5.0.tar.bz2	

 Edit version.mk to read!
# cat version.mk 	
PKGROOT	 	= /opt/valgrind	
NAME 	= valgrind	
VERSION 	= 3.5.0	
RELEASE 	= 1	
TARBALL_POSTFIX 	= tar.bz2	

 The only thing that needed changing was
the last line from “.tgz” to “tar.bz2”!

© 2010 UC Regents! 24!

Valgrind – A Working example!
 Now inspect the Makefile!
 Three lines make all the difference in the

world!
REDHAT.ROOT = $(CURDIR)/../../	

-include $(ROCKSROOT)/etc/Rules.mk	
include Rules.mk	

 Never ever change these lines!
 (Unless youʼre doing something real fancy)!

•  (which you shouldnʼt be in the first place)!
© 2010 UC Regents! 25!

Valgrind – A working example!
 A really simple Makefile!
 Three targets!

 build, install, clean!
 “build” runs “configure; make”!
 “install” runs “make install”!
 “clean” can be to cleanup after yourself in

the build directory !
•  strictly optional but recommended!

© 2010 UC Regents! 26!

Valgrind – A working example!
 One small change to Makefile!
 Since tarball is “tar.bz2” change !
“gunzip –c” to “bzcat”!
 Run!
# gmake pkg	
 “gmake” compiles on both Linux and

SunOS!
 “pkg” creates RPM on Linux and PKG on

SunOS!
© 2010 UC Regents! 27!

Do it!!

© 2010 UC Regents! 28!

[root@aurora valgrind]# ls	
graphs Makefile nodes src version.mk	
[root@aurora valgrind]# cd src/valgrind/	
[root@aurora valgrind]# gmake pkg 1>build.log 2>&1 </dev/null &	
[1] 18813	
[root@aurora valgrind]# ls	
_arch Makefile rocks-version.mk Rules-linux.mk Rules-

scripts.mk valgrind.spec.mk	
build.log _os Rules-install.mk Rules.mk

valgrind-3.5.0.tar.bz2 version.mk	
_distribution python.mk Rules-linux-centos.mk Rules-rcfiles.mk

valgrind.spec	
[root@aurora valgrind]# cd ../..	
[root@aurora valgrind]# ls	
BUILD graphs Makefile nodes RPMS SOURCES SPECS src SRPMS version.mk	

# find RPMS/ -type f 	
RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm	
[root@aurora valgrind]# rpm -qip RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm 	
Name : valgrind Relocations: (not relocatable)	
Version : 3.5.0 Vendor: Rocks Clusters	
Release : 1 Build Date: Thu 03 Jun 2010

09:25:24 AM PDT	
Install Date: (not installed) Build Host:

aurora.rocksclusters.org	
Group : System Environment/Base Source RPM:

valgrind-3.5.0-1.src.rpm	
Size : 57700775 License: University of

California	
Signature : (none)	
Summary : Tool for finding memory management bugs in programs	
Description :	
Valgrind is a tool to help you find memory-management problems in your	
programs. When a program is run under Valgrind's supervision, all	
reads and writes of memory are checked, and calls to	
malloc/new/free/delete are intercepted. As a result, Valgrind can	
detect a lot of problems that are otherwise very hard to	
find/diagnose.	

© 2010 UC Regents! 29!

Part II: The Map!

© 2010 UC Regents! 30!

© 2010 UC Regents! 31!

Install Rocks 
Base Graph!

Basic Instructions that
define all Rocks Appliances

Rolls have packages and
graphs

© 2010 UC Regents! 32!

Base + 
 Rolls!

© 2010 UC Regents! 33!

Compute
Root

  Traverse a graph to build up a
kickstart file (done at kickstart
time) !

  Flexible!
  Easy to share functionality

between disparate node types!

Frontend
Root

© 2010 UC Regents! 34!

Use Graph Structure to Dissect
Distribution!

  Use ʻnodesʼ and ʻedgesʼ to
build a customized kickstart
file!

  Nodes contain portion of
kickstart file!
  Can have a ʻmainʼ, ʻpackageʼ

and ʻpostʼ section in node file!
  Edges used to coalesce node

files into one kickstart file !

© 2010 UC Regents! 35!

Why We Use A Graph!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices

them into the system graph file!

© 2010 UC Regents! 36!

Graph Edges: <edge>!
  <edge> attributes!

  from!
•  Required. The name of a node at end of the edge!

•  <edge from=“base” to=“autofs”/> !
  to!

•  Required. The name of a node at the head of an edge!
  arch!

•  Optional. Which architecture should follow this edge. Default is
all.!

  In 5.3 edges can have conditionals based on attributes!

© 2010 UC Regents! 37!

Graph Edges!
 <edge from=“security-server” to=“central”/>!

<edge from=“client”>!
<to arch=“i386,x86_64”>grub-client</to>!
<to>autofs-client</to>!
<to>installclass-client</to>!

</edge>!

© 2010 UC Regents! 38!

Graph Ordering!
  Added recently to give us control over when node <post>

sections are run!
•  <order head="database">!

•  <tail>database-schema</tail>!
•  </order>!

  database node appears before database-schema in all kickstart
files.!

  Special HEAD and TAIL nodes represent “first” and “last” (post sections
that you want to run first/last)!

•  <order head=“installclass” tail=“HEAD”/> !BEFORE HEAD!

•  <order head=“TAIL” tail=“postshell”/> !AFTER TAIL!

© 2010 UC Regents! 39!

Graph Ordering: <order>!
  <order> attributes!

  head!
•  Required. The name of a node whose <post> section will

appear BEFORE in the kickstart file.!
  tail!

•  Required. The name of a node whose <post> section will
appear AFTER in the kickstart file.!

•  <order head=“grub” tail=“grub-server”/>!
  arch!

•  Optional. Which architecture should follow this edge.
Default is all.!

Valgrind Example: Connecting
into the graph!
vi graphs/default/valgrind.xml (and add:)!
 <edge from="base">	
 <to>valgrind</to>	
 </edge>	

This tells us that Valgrind should be on all
appliances.!

© 2010 UC Regents! 40!

Valgrind – A working Example!

© 2010 UC Regents! 41!

Part III: Instruction set!

© 2010 UC Regents! 42!

Node XML Files!
 We use XML files to define the nodes in

the graph !
 What packages to install!
 What to do at <post> installation!

 We also use XML files to define the
graph structure!

© 2010 UC Regents! 43!

© 2010 UC Regents! 44!

<package> Tag!
  <package>valgrind</package> 	

  Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ʻvalgrindʼ.!

  <package arch=“x86_64”>valgrind</package>	
  Only install this package on x86_64 architectures!

  <package arch=“i386,x86_64”>valgrind</package>	
  Will install this package on both i386 and x86_64!

Convention!
 <roll>-server.xml!

 Things you install and configure only on
Frontends!

 <roll>-client.xml!
 Things you install and configure only on

“client” nodes (eg. Compute, NAS, VM-
containers, …)!

 <roll>-common.xml!
 Things installed everywhere!

© 2010 UC Regents! 45!

Where the art is: <post>!
 Package Creation ranges from trivial to

not-so-trivial!
 Defining where packages go, some on

this appliance, some on that.
Straightforward!

 But, the post section …!

© 2010 UC Regents! 46!

© 2010 UC Regents! 47!

Nodes Post Section !
  Scripts have minimal $PATH (/bin, /usr/bin)!
  Error reporting is minimal !

  Follow “Day in the Trenches” presentation by Greg Bruno!

  Not all services are up. Network is however.!
  Order tag is useful to place yourself favorably relative to other

services!

  Can have multiple <post> sections in a single node!

© 2010 UC Regents! 48!

Nodes XML Tools: <post>!
  <post> attributes!

  arch!
•  Optional. Specifies which architectures to apply package. !

  arg!
•  Optional. Anaconda arguments to %post!

•  --nochroot (rare): operate script in install environment,
not target disk.!

•  --interpreter: specifies script language!

•  <post arg=“--nochroot --interpreter /usr/bin/python”>!
 Arbitrary Attributes - In 5.3 most tags can have

conditionals based on attributes!

© 2010 UC Regents! 49!

Post Example: PXE config!

<post arch=“x86_64,i386”>
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name=“/tftpboot/pxe../default”>
default ks
prompt 0
label ks

 kernel vmlinuz
 append ks inird=initrd.img……

</file>
</post>
…

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

…RCS…
cat > /tftpboot/pxe../default << EOF
default ks
prompt 0
…
EOF
..RCS…

for an x86_64 machine:

© 2010 UC Regents! 50!

Nodes XML Tools: <file>!
  <file> attributes!

  name!
•  Required. The full path of the file to write.!

  mode!
•  Optional. Value is “create” or “append”. Default is create.!

  owner!
•  Optional. Value is “user.group”, can be numbers or names.!

•  <file name=“/etc/hi” owner=“daemon.root”>!
  perms!

•  Optional. The permissions of the file. Can be any valid “chmod” string.!
•  <file name=“/etc/hi” perms=“a+x”>!

© 2010 UC Regents! 51!

Nodes XML Tools: <file>!
  <file> attributes (continued)!

  vars!
•  Optional. Value is “literal” or “expanded”. In literal (default), no

variables or backticks in file contents are processed. In
expanded, they work normally.!

•  <file name=“/etc/hi” vars=“expanded”>!
•  The current date is `date`!

•  </file> !
  expr!

•  Optional. Specifies a command (run on the frontend)
whose output is placed in the file.!

•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>!

© 2010 UC Regents! 52!

Fancy <file>: nested tags!

<file name=“/etc/hi”>

Rocks release:
<eval>
date +”%d-%b-%Y”
echo “”
cat /etc/rocks-release
</eval>

</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’

Rocks release:
13-May-2005

Rocks release 4.2.1 (Cydonia)

EOF
…RCS cleanup commands…

© 2010 UC Regents! 53!

A Real Node file: ssh!
<kickstart>

 <description>
 Enable SSH
 </description>

 <package>openssh/package>
 <package>openssh-clients</package>
 <package>openssh-server</package>
 <package>openssh-askpass</package>

<post>

<file name="/etc/ssh/ssh_config">
Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

Valgrind – A working example!
 In our case, itʼs so simple we donʼt have

to change the node file!
 Inspect the node file, in any case!
<kickstart>	
	<package>valgrind</package>	
	<package>roll-valgrind-usersguide</package>	

</kickstart>	

© 2010 UC Regents! 54!

Roll Building!
# gmake roll 1>build.log 2>&1 </dev/null &	
[1] 3627	
[root@aurora valgrind]# 	
[root@aurora valgrind]# 	
[1]+ Done gmake roll > build.log 2>&1 < /dev/null	
[root@aurora valgrind]# ls valgrind-3.5-0.x86_64.disk1.iso 	
valgrind-3.5-0.x86_64.disk1.iso	
[root@aurora valgrind]# rocks add roll valgrind-3.5-0.x86_64.disk1.iso 	
Copying valgrind to Rolls.....39934 blocks	
[root@aurora valgrind]# 	

© 2010 UC Regents! 55!

• And youʼre done!

© 2010 UC Regents! 56!

To Re-iterate!

Valgrind	

Application	

© 2010 UC Regents! 57!

Configuration	

Information	

© 2010 UC Regents! 58!

Valgrind	

THE ROLL	

Configuration	

Information	

© 2010 UC Regents! 59!

How does it fit in?!

Valgrind	

Roll	

© 2010 UC Regents! 60!

How does it fit in?!

© 2010 UC Regents! 61!

How does all this help you?!
 Roll mechanism is the recommended way

of deploying software on a Rocks cluster!
 It fits into the framework of Rocks!
 Itʼs reproducible!
 It scales!

Summary!
  Look at the Rocks Rolls for examples.!
 Rolls are not difficult, Understanding what

is going on under the covers helps
demystify!

 Some software is more challenging than
others!

 Test. Test. Test.!

© 2010 UC Regents! 62!

