
Developing Rolls!

Anoop Rajendra!

© 2010 UC Regents! 1!

Two Questions!
 How do you reliably add and configure

(complex) software in a cluster
environment!

 How do you capture changes to your
system, and replicate it?!

© 2010 UC Regents! 2!

© 2010 UC Regents! 3!

What are Rolls?!
 Software components that make up a

Rocks system!
 Mechanism for delivery of packages and

configuration!
 Rolls are the atomic unit in Rocks!
 Rolls are how you should be getting your

software onto a Rocks cluster!

Purpose of Rolls!
 Capture expert knowledge and automate

it.!
 Enable others to extend the system to

provide completely new functionality!
 Make the clustered system reliable and

reproducible!
 Backup of your software infrastructure!

© 2010 UC Regents! 4!

5!

Rocks Philosophy!

 Weʼve developed a “cluster compiler”!
 Source code + preprocessor + linker!
 XML framework + XML parser + kickstart

(Jumpstart for Solaris) file generator!

 Think about “programming your cluster”!
 Not “administering your cluster”!

© 2010 UC Regents!

© 2010 UC Regents! 6!

Context of a Roll!

© 2010 UC Regents! 7!

Normal RedHat Distribution!

© 2010 UC Regents! 8!

Distribution Based on Rolls!

© 2010 UC Regents! 9!

Whatʼs inside a Roll?!
 Binaries - RPM format!
 Configuration data!
 Installation Map!

© 2010 UC Regents! 10!

Treasure Hunting!
 The treasure you seek is a fully installed

and configured cluster!
 What are the things youʼll need!

© 2010 UC Regents! 11!

Map!

Tells you the path you need to take!

© 2010 UC Regents! 12!

Instruction set!

What to do at each point!
in the map ?!

© 2010 UC Regents! 13!

Resources!

 Small trinkets you
pick up along the way

 Just to keep
 Or to use later

© 2010 UC Regents! 14!

Translate that to a Roll!
 Graph file ⇔ Installation Map ⇔ Map!
 Node Files ⇔ Configuration Data ⇔ Instruction

set!
 RPM/Binaries ⇔ Resources!

© 2010 UC Regents! 15!

Making your own Roll!

Creating a Roll Directory!
 On a Rocks 5.3 system!

# cd /export/site-roll/rocks/src/roll	
# rocks create new roll valgrind version=3.5 color=orange	
# find valgrind/ -type f	
valgrind/src/sunos.mk	
valgrind/src/linux.mk	
valgrind/src/valgrind/Makefile	
valgrind/src/valgrind/version.mk	
valgrind/src/Makefile	
valgrind/nodes/valgrind.xml	
valgrind/Makefile	
valgrind/graphs/default/valgrind.xml	
valgrind/version.mk	

© 2010 UC Regents! 16!

Part I: Packages!

© 2010 UC Regents! 17!

Packages !
  Rolls require packages to be in native OS

format !
  RPM for Linux!
  PKG for Solaris!

© 2010 UC Regents! 18!

Packages - Advantages!
 Inspect software with native OS tools!
 Can install “by hand” using OS tools!
 Tracking is easy – The system knows

about the package!

© 2010 UC Regents! 19!

Packages - Disadvantages!
 You have to make your software into a

package!
 This only seems hard!

 Package Mechanisms can sometimes
cause odd behavior!
 Solaris PKG does not like “_”!
 RPMS can have quirks!

© 2010 UC Regents! 20!

Our Philosophy on Packages!
 We use packages as a transport!
 No configuration is done in the package

%post section!
 This is what the Rocks node files are used for!

 Stay away from explicitly creating “spec”
files!

 Make is your friend (ours too)!

© 2010 UC Regents! 21!

Make requirements!
 For Linux, we support building only a

frontend node!
 For Solaris, we support Solaris

Development appliance!
 Faith!

 There is large set of included make rules that
allow us to quickly package software!

 You have to trust what the system is doing. !

© 2010 UC Regents! 22!

Different Ways For Packaging
From Source!
 Build software by hand, then point!

# rocks create package 	
at the directory!

 Build an RPM Spec file !
 Use the Rocks-supplied Make

Infrastructure!

© 2010 UC Regents! 23!

Valgrind – A Working Example!
 Using the valgrind example.!
# cd valgrind/src/valgrind	
# wget –q http://valgrind.org/downloads/valgrind-3.5.0.tar.bz2	

 Edit version.mk to read!
# cat version.mk 	
PKGROOT	 	= /opt/valgrind	
NAME 	= valgrind	
VERSION 	= 3.5.0	
RELEASE 	= 1	
TARBALL_POSTFIX 	= tar.bz2	

 The only thing that needed changing was
the last line from “.tgz” to “tar.bz2”!

© 2010 UC Regents! 24!

Valgrind – A Working example!
 Now inspect the Makefile!
 Three lines make all the difference in the

world!
REDHAT.ROOT = $(CURDIR)/../../	

-include $(ROCKSROOT)/etc/Rules.mk	
include Rules.mk	

 Never ever change these lines!
 (Unless youʼre doing something real fancy)!

•  (which you shouldnʼt be in the first place)!
© 2010 UC Regents! 25!

Valgrind – A working example!
 A really simple Makefile!
 Three targets!

 build, install, clean!
 “build” runs “configure; make”!
 “install” runs “make install”!
 “clean” can be to cleanup after yourself in

the build directory !
•  strictly optional but recommended!

© 2010 UC Regents! 26!

Valgrind – A working example!
 One small change to Makefile!
 Since tarball is “tar.bz2” change !
“gunzip –c” to “bzcat”!
 Run!
# gmake pkg	
 “gmake” compiles on both Linux and

SunOS!
 “pkg” creates RPM on Linux and PKG on

SunOS!
© 2010 UC Regents! 27!

Do it!!

© 2010 UC Regents! 28!

[root@aurora valgrind]# ls	
graphs Makefile nodes src version.mk	
[root@aurora valgrind]# cd src/valgrind/	
[root@aurora valgrind]# gmake pkg 1>build.log 2>&1 </dev/null &	
[1] 18813	
[root@aurora valgrind]# ls	
_arch Makefile rocks-version.mk Rules-linux.mk Rules-

scripts.mk valgrind.spec.mk	
build.log _os Rules-install.mk Rules.mk

valgrind-3.5.0.tar.bz2 version.mk	
_distribution python.mk Rules-linux-centos.mk Rules-rcfiles.mk

valgrind.spec	
[root@aurora valgrind]# cd ../..	
[root@aurora valgrind]# ls	
BUILD graphs Makefile nodes RPMS SOURCES SPECS src SRPMS version.mk	

# find RPMS/ -type f 	
RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm	
[root@aurora valgrind]# rpm -qip RPMS/x86_64/valgrind-3.5.0-1.x86_64.rpm 	
Name : valgrind Relocations: (not relocatable)	
Version : 3.5.0 Vendor: Rocks Clusters	
Release : 1 Build Date: Thu 03 Jun 2010

09:25:24 AM PDT	
Install Date: (not installed) Build Host:

aurora.rocksclusters.org	
Group : System Environment/Base Source RPM:

valgrind-3.5.0-1.src.rpm	
Size : 57700775 License: University of

California	
Signature : (none)	
Summary : Tool for finding memory management bugs in programs	
Description :	
Valgrind is a tool to help you find memory-management problems in your	
programs. When a program is run under Valgrind's supervision, all	
reads and writes of memory are checked, and calls to	
malloc/new/free/delete are intercepted. As a result, Valgrind can	
detect a lot of problems that are otherwise very hard to	
find/diagnose.	

© 2010 UC Regents! 29!

Part II: The Map!

© 2010 UC Regents! 30!

© 2010 UC Regents! 31!

Install Rocks 
Base Graph!

Basic Instructions that
define all Rocks Appliances

Rolls have packages and
graphs

© 2010 UC Regents! 32!

Base + 
 Rolls!

© 2010 UC Regents! 33!

Compute
Root

  Traverse a graph to build up a
kickstart file (done at kickstart
time) !

  Flexible!
  Easy to share functionality

between disparate node types!

Frontend
Root

© 2010 UC Regents! 34!

Use Graph Structure to Dissect
Distribution!

  Use ʻnodesʼ and ʻedgesʼ to
build a customized kickstart
file!

  Nodes contain portion of
kickstart file!
  Can have a ʻmainʼ, ʻpackageʼ

and ʻpostʼ section in node file!
  Edges used to coalesce node

files into one kickstart file !

© 2010 UC Regents! 35!

Why We Use A Graph!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices

them into the system graph file!

© 2010 UC Regents! 36!

Graph Edges: <edge>!
  <edge> attributes!

  from!
•  Required. The name of a node at end of the edge!

•  <edge from=“base” to=“autofs”/> !
  to!

•  Required. The name of a node at the head of an edge!
  arch!

•  Optional. Which architecture should follow this edge. Default is
all.!

  In 5.3 edges can have conditionals based on attributes!

© 2010 UC Regents! 37!

Graph Edges!
 <edge from=“security-server” to=“central”/>!

<edge from=“client”>!
<to arch=“i386,x86_64”>grub-client</to>!
<to>autofs-client</to>!
<to>installclass-client</to>!

</edge>!

© 2010 UC Regents! 38!

Graph Ordering!
  Added recently to give us control over when node <post>

sections are run!
•  <order head="database">!

•  <tail>database-schema</tail>!
•  </order>!

  database node appears before database-schema in all kickstart
files.!

  Special HEAD and TAIL nodes represent “first” and “last” (post sections
that you want to run first/last)!

•  <order head=“installclass” tail=“HEAD”/> !BEFORE HEAD!

•  <order head=“TAIL” tail=“postshell”/> !AFTER TAIL!

© 2010 UC Regents! 39!

Graph Ordering: <order>!
  <order> attributes!

  head!
•  Required. The name of a node whose <post> section will

appear BEFORE in the kickstart file.!
  tail!

•  Required. The name of a node whose <post> section will
appear AFTER in the kickstart file.!

•  <order head=“grub” tail=“grub-server”/>!
  arch!

•  Optional. Which architecture should follow this edge.
Default is all.!

Valgrind Example: Connecting
into the graph!
vi graphs/default/valgrind.xml (and add:)!
 <edge from="base">	
 <to>valgrind</to>	
 </edge>	

This tells us that Valgrind should be on all
appliances.!

© 2010 UC Regents! 40!

Valgrind – A working Example!

© 2010 UC Regents! 41!

Part III: Instruction set!

© 2010 UC Regents! 42!

Node XML Files!
 We use XML files to define the nodes in

the graph !
 What packages to install!
 What to do at <post> installation!

 We also use XML files to define the
graph structure!

© 2010 UC Regents! 43!

© 2010 UC Regents! 44!

<package> Tag!
  <package>valgrind</package> 	

  Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ʻvalgrindʼ.!

  <package arch=“x86_64”>valgrind</package>	
  Only install this package on x86_64 architectures!

  <package arch=“i386,x86_64”>valgrind</package>	
  Will install this package on both i386 and x86_64!

Convention!
 <roll>-server.xml!

 Things you install and configure only on
Frontends!

 <roll>-client.xml!
 Things you install and configure only on

“client” nodes (eg. Compute, NAS, VM-
containers, …)!

 <roll>-common.xml!
 Things installed everywhere!

© 2010 UC Regents! 45!

Where the art is: <post>!
 Package Creation ranges from trivial to

not-so-trivial!
 Defining where packages go, some on

this appliance, some on that.
Straightforward!

 But, the post section …!

© 2010 UC Regents! 46!

© 2010 UC Regents! 47!

Nodes Post Section !
  Scripts have minimal $PATH (/bin, /usr/bin)!
  Error reporting is minimal !

  Follow “Day in the Trenches” presentation by Greg Bruno!

  Not all services are up. Network is however.!
  Order tag is useful to place yourself favorably relative to other

services!

  Can have multiple <post> sections in a single node!

© 2010 UC Regents! 48!

Nodes XML Tools: <post>!
  <post> attributes!

  arch!
•  Optional. Specifies which architectures to apply package. !

  arg!
•  Optional. Anaconda arguments to %post!

•  --nochroot (rare): operate script in install environment,
not target disk.!

•  --interpreter: specifies script language!

•  <post arg=“--nochroot --interpreter /usr/bin/python”>!
 Arbitrary Attributes - In 5.3 most tags can have

conditionals based on attributes!

© 2010 UC Regents! 49!

Post Example: PXE config!

<post arch=“x86_64,i386”>
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name=“/tftpboot/pxe../default”>
default ks
prompt 0
label ks

 kernel vmlinuz
 append ks inird=initrd.img……

</file>
</post>
…

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

…RCS…
cat > /tftpboot/pxe../default << EOF
default ks
prompt 0
…
EOF
..RCS…

for an x86_64 machine:

© 2010 UC Regents! 50!

Nodes XML Tools: <file>!
  <file> attributes!

  name!
•  Required. The full path of the file to write.!

  mode!
•  Optional. Value is “create” or “append”. Default is create.!

  owner!
•  Optional. Value is “user.group”, can be numbers or names.!

•  <file name=“/etc/hi” owner=“daemon.root”>!
  perms!

•  Optional. The permissions of the file. Can be any valid “chmod” string.!
•  <file name=“/etc/hi” perms=“a+x”>!

© 2010 UC Regents! 51!

Nodes XML Tools: <file>!
  <file> attributes (continued)!

  vars!
•  Optional. Value is “literal” or “expanded”. In literal (default), no

variables or backticks in file contents are processed. In
expanded, they work normally.!

•  <file name=“/etc/hi” vars=“expanded”>!
•  The current date is `date`!

•  </file> !
  expr!

•  Optional. Specifies a command (run on the frontend)
whose output is placed in the file.!

•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>!

© 2010 UC Regents! 52!

Fancy <file>: nested tags!

<file name=“/etc/hi”>

Rocks release:
<eval>
date +”%d-%b-%Y”
echo “”
cat /etc/rocks-release
</eval>

</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’

Rocks release:
13-May-2005

Rocks release 4.2.1 (Cydonia)

EOF
…RCS cleanup commands…

© 2010 UC Regents! 53!

A Real Node file: ssh!
<kickstart>

 <description>
 Enable SSH
 </description>

 <package>openssh/package>
 <package>openssh-clients</package>
 <package>openssh-server</package>
 <package>openssh-askpass</package>

<post>

<file name="/etc/ssh/ssh_config">
Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

Valgrind – A working example!
 In our case, itʼs so simple we donʼt have

to change the node file!
 Inspect the node file, in any case!
<kickstart>	
	<package>valgrind</package>	
	<package>roll-valgrind-usersguide</package>	

</kickstart>	

© 2010 UC Regents! 54!

Roll Building!
# gmake roll 1>build.log 2>&1 </dev/null &	
[1] 3627	
[root@aurora valgrind]# 	
[root@aurora valgrind]# 	
[1]+ Done gmake roll > build.log 2>&1 < /dev/null	
[root@aurora valgrind]# ls valgrind-3.5-0.x86_64.disk1.iso 	
valgrind-3.5-0.x86_64.disk1.iso	
[root@aurora valgrind]# rocks add roll valgrind-3.5-0.x86_64.disk1.iso 	
Copying valgrind to Rolls.....39934 blocks	
[root@aurora valgrind]# 	

© 2010 UC Regents! 55!

• And youʼre done!

© 2010 UC Regents! 56!

To Re-iterate!

Valgrind	

Application	

© 2010 UC Regents! 57!

Configuration	

Information	

© 2010 UC Regents! 58!

Valgrind	

THE ROLL	

Configuration	

Information	

© 2010 UC Regents! 59!

How does it fit in?!

Valgrind	

Roll	

© 2010 UC Regents! 60!

How does it fit in?!

© 2010 UC Regents! 61!

How does all this help you?!
 Roll mechanism is the recommended way

of deploying software on a Rocks cluster!
 It fits into the framework of Rocks!
 Itʼs reproducible!
 It scales!

Summary!
  Look at the Rocks Rolls for examples.!
 Rolls are not difficult, Understanding what

is going on under the covers helps
demystify!

 Some software is more challenging than
others!

 Test. Test. Test.!

© 2010 UC Regents! 62!

