
Guidelines!
 We are a small group!
 Interrupt the speaker!
 Ask unrelated question!
 Help us keep this fluid!

 We can re-tool the agenda on-the-fly!

© 2010 UC Regents! 1!

© 2010 UC Regents! 2!

Community Development!

Topics!
  Community Status!

  Why this is Important!
  Open Source Licensing!
  Contributors and Working Groups!
  Source Code!

  Becoming a Developer!
  Graph and Rolls!
  Attributes!
  Command Line!

  Avoiding becoming a Developer!

© 2010 UC Regents! 3!

© 2010 UC Regents! 4!

Community Status!

WHY?!

© 2010 UC Regents! 5!

Rocks is almost 10 years old!!
 Mission accomplished!
 Rocks is the de facto open-source

clustering solution!
 Great user community!

 2000+ on mailing list!
 Amazing signal to noise ratio!

 Everything from 2 nodes cluster to top 10
supercomputers!

© 2010 UC Regents! 6!

Rocks is almost 10 years old!!
 90% of development is!

 NSF (and other grant) funded!
 Located at UC San Diego!

 Need to diversify development!
 More ideas, passion, and focus areas!
 More secure funding!

© 2010 UC Regents! 7!

OPEN SOURCE LICENSING!

© 2010 UC Regents! 8!

Licensing / Copyrights 
http://www.rocksclusters.org/wordpress/?page_id=48!
  Rocks is entirely open-source!
  BSD Attribution License!

  Standard UNIX open-source!
  Very friendly for derived works!

  We have not changed to the more recent non-attribution
BSD license!

  Copyrights are owned by University of California
Regents!

  3rd party code is a mix of licenses and copyrights!
  Most of Rocks bits are 3rd party!!

© 2010 UC Regents! 9!

Attribution Clause!

© 2010 UC Regents! 10!

This product includes software
developed by the Rocks®
Cluster Group at the San Diego
Supercomputer Center at the
University of California, San
Diego and its contributors.

Trademark 
invent@ucsd.edu!
 The Rocks name and logo are registered

trademarks.!
 For fee licensing is available!

 Standard usage!
 Derivative usage (e.g. “ACME Rocks”)!

© 2010 UC Regents! 11!

Summary!
  Rocks is open-source and free!
  Use it any way you wish!
  Make billions of dollars with it without even buying us a

single beer!

  Give us attribution!
  License the name for commercial use!

  These two things help keep us funded!

© 2010 UC Regents! 12!

EARLY COMMUNITY ROLLS!

© 2010 UC Regents! 13!

Sun Grid Engine!
 Way back in 2004!
 Rocks supported PBS!
 Scalable Systems added SGE support!

 Laurence Liew, Najib Ninaba!
 1st external developers for Rocks!
 Based in Singapore!

 SGE Roll created from this!

© 2010 UC Regents! 14!

Torque Roll!
 Way back in 2006!
 SGE Roll was the favorite of core team!
 Threatened to drop PBS Support!
 The Computer Center, University of Tromsø!

  Roy Dragseth!
  2nd major external developer!
  Based in Norway!

 Continues to develop and support Torque Roll!

© 2010 UC Regents! 15!

We were “big” overseas!

© 2010 UC Regents! 16!

WORKING GROUPS!
First major attempt for actively recruit developers!

© 2010 UC Regents! 17!

© 2010 UC Regents! 18!

Working Groups!
 Purpose!

 Fill gaps from core development team!
 Handle issues off the core road map!
 Make Rocks a more flexible solution!

 Success Metrics!
 Number of Rolls produced!
 Amount of new Documentation (Wiki, …)!

Software Update WG 
https://wiki.rocksclusters.org/wiki/index.php/Software_Update_(SUWG)!
 Started early 2008!

 Threads on yum updates increased!
 Core team said “donʼt do it”!
 Advocates said “it works for me”!
 WG was recruited to address the issue!

 Best practices defined!
 Exclude lists!
 Additional docs on custom restore Rolls!

© 2010 UC Regents! 19!

Status!
 Community Interest: High !
 Documentation: Moderate!
 Rolls Produced: None!

 Summary: Some real interest but needs
leadership.!

© 2010 UC Regents! 20!

Thumper Working Group  
https://wiki.rocksclusters.org/wiki/index.php/Rocks_on_Thumper!
 Began with Rocks Solaris port!

 Sun funded!
 How to Manage ZFS NAS appliances!
 Specifically Sun Thumper!

 Core team lead effort!
 Used by several groups at UCSD!
 Software is released!

© 2010 UC Regents! 21!

Status!
 Community Interest: Low !
 Documentation: Good!
 Rolls Produced: Jumpstart!

 Summary: Excellent activity with a small
UCSD audience. Needs to build a larger
user base.!

© 2010 UC Regents! 22!

Rolls Working Group  
https://wiki.rocksclusters.org/wiki/index.php/Rolls_Working_Group!
 Started early 2009!

 Developing free versions of commercial Rolls!
 Organized by Stanford University!

 Self-organized group of a 3 individuals!
 Good initial offering of Rolls!
 Struggled with mailing list support!

© 2010 UC Regents! 23!

Status!
 Community Interest: High !
 Documentation: Average!
 Rolls Produced: Good!

 Summary: Excellent start, needs help with
user support and keeping current with
Rocks releases.!

© 2010 UC Regents! 24!

Triton Working Group  
http://tritonresource.sdsc.edu/!
 Started 2009!

 Developing Roll for large production cluster!
 Every piece of SW on system is part of a Roll!
 Includes commercial software!

 Amazing set of Rolls (20+) to be released!
 Triton group is here at SDSC!
 No organized presence on Rocks list!

© 2010 UC Regents! 25!

Status!
 Community Interest: Good!
 Documentation: Good!
 Rolls Produced: Excellent!

 Summary: Highly productive group, but
meets weekly with member(s) of Rocks
core team. Phil is also their boss.!

© 2010 UC Regents! 26!

OVERALL GRADE: C-!
Great idea, some good traction, but not what we want!

© 2010 UC Regents! 27!

What can UCSD do better?!

© 2010 UC Regents! 28!

  WG phone/video conference!
  WG to Core team!
  WG All hands!

  Need to communicate roadmaps between WGs and
Core team!
  Ease release tracking!
  No surprises (e.g. Rocks Command Line)!

  Where should support issues go?!
  Main list!
  A new WG list!

Ideas?!
 Docs in dev process!

 Devel guide out of date!
 Mine mailing list for solution!

 Developer Cloning Process!
 Jumpstart guide to development!

 RESOLVED tag on mailing list!
 Bug/Issue searchable database!

 RH is a good example of this!
 IRC!
 AIM Address Book (non-indexed)!

© 2010 UC Regents! 29!

What can you do better!
 Tell us what you want!

 Complain!
 A lot!
 But, nicely!

 Ask for help to start a new working group!
 Join an existing working group!
 We are starting this today!

© 2010 UC Regents! 30!

SOURCE CODE!

© 2010 UC Regents! 31!

Version Control!
 Core team uses CVS!

  Thatʼs what we started with!
  We arenʼt changing anytime soon!

 CVS access available to very few people!
  Too risky!
  Access control is a pain!
  Release management difficult!

 We use Mecurial for all non-core development!
 Mecurial synced to CVS every 10 minutes!!

© 2010 UC Regents! 32!

Workflow!

© 2010 UC Regents! 33!

Example!

© 2010 UC Regents! 34!

$ hg clone http://fyp.rocksclusters.org/hg/rocks-5.3!
destination directory: rocks-5.3!
real URL is http://fyp.rocksclusters.org/hg/
rocks-5.3/!
requesting all changes!
adding changesets!
adding manifests!
adding file changes!
added 1 changesets with 2815 changes to 2815 files!
2815 files updated, 0 files merged, 0 files removed,
0 files unresolved!

Issues!
 Mecurial is slow!
 Transaction based!

 Any aborted operation rolls back!
 Do not stop the clone!

 Patch sets can be tedious!

© 2010 UC Regents! 35!

Advantages - Freedom!
 Publish your own repository!
 No need to even commit back to core!
 Commit broke code and only hurt yourself!

 Core Rocks remains stable!
 HG clones innovate!

© 2010 UC Regents! 36!

Notes!
 For code older than 5.0!

 ftp://ftp.rocksclusters.org/pub/rocks/rocks-src!
 rocks-2.3 to rocks-4.3!

 We are not tied to this workflow!
 We are not tied to HG!

 Other workflow suggestions are solicited!

© 2010 UC Regents! 37!

Becoming a Developer!

Resume @ 11:20!

© 2010 UC Regents! 38!

GRAPH AND ROLLS !
The Rocks engine!

© 2009 UC Regents! 39!

© 2009 UC Regents! 40!

Rocks Configuration Graph!

© 2009 UC Regents! 41!

The XML Graph Includes!
  Nodes!

  Single purpose modules!
  Kickstart file snippets (XML tags map to kickstart commands)!
  Approximately 200 node files in Rocks!

  Graph!
  Defines interconnections for nodes!
  Think OOP or dependencies (class, #include)!
  A single default graph file in Rocks!

  Macros!
  SQL Database holds site and node specific state!
  Node files may contain &state; entities (attributes)!

© 2009 UC Regents! 42!

Composition!
 Aggregate Functionality!

 scripting IsA!
  perl-development!
  python-development!
  tcl-development!

© 2009 UC Regents! 43!

Traverse by Attributes!
  if x11 == TRUE!

  client IsA x11!
  if rsh == FALSE!

  client IsNotA rsh!

  Most important slide in
this session!

  RCL allows you to control
the graph!

© 2009 UC Regents! 44!

Think of this as Cluster DNA!

ROLL FUNDAMENTALS!

© 2009 UC Regents! 45!

© 2009 UC Regents! 46!

Cluster Software Stack!

© 2009 UC Regents! 47!

Rolls Break Apart Rocks!

Rolls: Modifying a Standard System Installer to Support User-Customizable Cluster Frontend Appliances. Greg Bruno, Mason J. Katz,
Federico D. Sacerdoti, and Phil M. Papadopoulos. IEEE International Conference on Cluster Computing, San Diego, California, Sep. 2004.

Our Graph Has Colors!

© 2009 UC Regents! 48!

© 2009 UC Regents! 49!

Rolls are sub-graphs!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices

them into the system graph file!

STARTING FROM THE EMPTY
SET!

{ }!
© 2009 UC Regents! 50!

© 2009 UC Regents! 51!

{ base }!

© 2009 UC Regents! 52!

{ base, hpc }!

© 2009 UC Regents! 53!

{ base, hpc, kernel }!

© 2009 UC Regents! 54!

{ base, hpc, kernel, sge }!

© 2009 UC Regents! 55!

Simplified Example  
{base, hpc, sge, bio}!

© 2009 UC Regents! 56!

Two different Clusters!
MPI Cluster::{base, hpc, kernel, sge} Protein Databank::{base, hpc, kernel, pdb}

ATTRIBUTES!

© 2010 UC Regents! 57!

© 2009 UC Regents! 58!

Attributes!
 Attributes can be set at 4 levels:!

  Globally!
•  ʻrocks set attrʼ!

  By appliance type!
•  ʻrocks set appliance attrʼ!

  By OS (linux or sunos)!
•  ʻrocks set os attrʼ!

  By host!
•  ʻrocks set host attrʼ!

© 2009 UC Regents! 59!

Attributes!
 Example, set the public IP address of a remote

frontend that is used during a ʻcentralʼ
installation:!

rocks set host attr vi-1.rocksclusters.org \
 Kickstart_PublicAddress 137.110.119.118

© 2009 UC Regents! 60!

Attributes!
rocks list host attr tile-0-0
HOST ATTR VALUE SOURCE
tile-0-0: Info_CertificateCountry US G
tile-0-0: Info_CertificateLocality San Diego G
tile-0-0: Info_CertificateOrganization CalIT2 G
tile-0-0: Kickstart_DistroDir /export/rocks G
tile-0-0: Kickstart_PrivateAddress 10.1.1.1 G
tile-0-0: Kickstart_PrivateBroadcast 10.1.255.255 G
tile-0-0: Kickstart_PrivateDNSDomain local G
tile-0-0: Kickstart_PrivateDNSServers 10.1.1.1 G
tile-0-0: Kickstart_PrivateGateway 10.1.1.1 G
tile-0-0: Kickstart_PublicDNSServers 132.239.0.252 G
tile-0-0: Kickstart_PublicGateway 137.110.119.1 G
tile-0-0: Kickstart_PublicHostname vizagra.rocksclusters.org G
tile-0-0: Kickstart_PublicKickstartHost central.rocksclusters.org G
tile-0-0: Kickstart_PublicNTPHost pool.ntp.org G
tile-0-0: Kickstart_PublicNetmask 255.255.255.0 G
tile-0-0: Kickstart_PublicNetmaskCIDR 24 G
tile-0-0: Kickstart_PublicNetwork 137.110.119.0 G
tile-0-0: Kickstart_Timezone America/Los_Angeles G
tile-0-0: Server_Partitioning force-default-root-disk-only G
tile-0-0: arch x86_64 H
tile-0-0: hostname tile-0-0 I
tile-0-0: rack 0 I
tile-0-0: rank 0 I
tile-0-0: rocks_version 5.2 G
tile-0-0: HideBezels false G
tile-0-0: HttpConf /etc/httpd/conf O
tile-0-0: HttpConfigDirExt /etc/httpd/conf.d O
tile-0-0: HttpRoot /var/www/html O

© 2009 UC Regents! 61!

Edge Conditionals!
 Use attributes to conditionally traverse

edges of the configuration graph!

 If ʻrshʼ evaluates to ʻtrueʼ, then the edge
from ʻclientʼ to ʻrshʼ will be traversed!
 Default value is ʻfalseʼ!

<edge from="client" cond="rsh">
 <to>rsh</to>

</edge>

© 2009 UC Regents! 62!

Edge Conditionals!
 To set a conditional attribute:!

 Edge conditionals are attributes!
 Can also be set at 4 levels:!

  Globally!
  By appliance type!
  By OS (linux or sunos)!
  By host!

rocks set attr rsh true

COMMAND LINE!

© 2010 UC Regents! 63!

Evil Commands!
Usage: add-extra-nic [-hvv] [-p password] [-u host] [-d database] [--help]!
 [--list-rcfiles] [--list-project-info] [--verbose] [--dump] [--del] [--list]!
 [--verbose] [--no-update] [--no-modify] [--dryrun] [--rcfile arg] [--host host]!
 [--password password] [--db database] [--user host]!
 [--if interface (default: eth1)] [--mac mac address]!
 [--module linux driver module name] [--ip ip address]!
 [--netmask netmask (default /24)] [--gateway ip address of gateway]!
 [--name hostname on new interface] [--site client ip] node!

Usage: rocks-dist [-hvcpv] [-p password] [-u host] [-d database] [-a arch]!
 [-d dirname] [-g path] [-l lang] [-r release] [--help] [--list-rcfiles]!
 [--list-project-info] [--verbose] [--copy] [--debug] [--graph-draw-invis-edges]!
 [--graph-draw-order] [--graph-draw-edges] [--graph-draw-key] [--graph-draw-all]!
 [--graph-draw-landscape] [--install] [--verbose] [--with-rolls-only] [--clean]!
 [--notorrent] [--rcfile arg] [--host host] [--password password]!
 [--db database] [--user host] [--arch architecture] [--comps path]!
 [--dist dirname] [--graph-draw-size arg] [--graph-draw-format arg]!
 [--mirror-dir dirname] [--mirror-host hostname] [--root dirname]!
 [--cdrom /mnt/cdrom] [--with-roll rollname-rollversion]!
 [--path single path item] command !
Available commands:!
dist dvd makecontrib makesitenodes copycd usb copyroll cdrom paths graph dist2mirror!

© 2009 UC Regents! 64!

Command Line as API!
  Lack of consistency in Rocks commands!

  add-extra-nic (15 flags)!
  411put!
  rocks-dist!
  dbreport (~ a dozen reports)!

 Not extensible to other groups!
  How do I add a flag to an existing command?!
  How do I add a new command?!
  How do I document my command?!

© 2009 UC Regents! 65!

Do Over!
  Consistent!

  Interface!
  Argument parsing!
  Usage / Help!

  Extensible!
  Easy to add commands (3rd party rolls)!
  Easy to modify commands!

  Easy to guess the right command!
  Purge all –flags from Rocks!
  Hide the SQL database (and underlying schema)!
  Inspired by Trac!

© 2009 UC Regents! 66!

Verb Based!
  “add”, “set”, “enable”, …!

  Modify the cluster
database!

  “list”, “dump”, “report”!
  Inspect the cluster

database!
 About 20 verbs in the

command line so far!
 You can even add your

own!
© 2009 UC Regents! 67!

Grammar!
  rocks <verb> <object…> <subject> <params…>!
 Object is general to specific!

  “host” “interface”!
  “network” “subnet”!
  “viz” “layout”!

 Subject is typed!
  host!
  appliance!
  network!

© 2009 UC Regents! 68!

Implementation!
 Python!

  Similar to existing dbreport code!
  Very small modules!

 Command line is identical to the directory
hierarchy!
  Verbs are directories!
  Objects are directories!
  Subjects are __init__.py files!

 Commands are added by adding directories!

© 2008 UC Regents! 69!

© 2008 UC Regents! 70!

rocks add host pxeaction 	

Rolls Can Add Commands!
 Similar to the

configuration graph!
 Rolls can add

command line!
  Files : commands!
  Directories : verbs and

objects!
 Think hard before

adding another verb!

© 2008 UC Regents! 71!

add!
 Creates new entries

in the cluster
database!

 Examples:!
  Hosts!
  Appliances!
  Rolls!

© 2008 UC Regents! 72!

rocks add distribution!

© 2008 UC Regents! 73!

dump!
 Returns cluster

database information
in the form of rocks
command lines!

 Examples:!
  Hosts!
  Network!

 Same as –dump flag
on insert-ethers!

© 2008 UC Regents! 74!

rocks dump host!
# rocks dump host	
/opt/rocks/bin/rocks add host vizagra cpus=1 rack=0 rank=0 membership="Frontend"	
/opt/rocks/bin/rocks add host tile-0-1 cpus=2 rack=0 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-0 cpus=2 rack=0 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-2 cpus=2 rack=0 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-3 cpus=2 rack=0 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-3 cpus=2 rack=1 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-2 cpus=2 rack=1 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-1 cpus=2 rack=1 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-0 cpus=2 rack=1 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-0 cpus=2 rack=2 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-1 cpus=2 rack=2 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-2 cpus=2 rack=2 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-3 cpus=2 rack=2 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-0 cpus=2 rack=3 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-1 cpus=2 rack=3 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-2 cpus=2 rack=3 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-3 cpus=2 rack=3 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-0 cpus=2 rack=4 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-1 cpus=2 rack=4 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-2 cpus=2 rack=4 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-3 cpus=2 rack=4 rank=3 membership="Tile"	

© 2008 UC Regents! 75!

list!
 Reports information

in human readable
format!

 No side-effects on
the database!

 Examples:!
  Hosts!
  Appliances!
  Rolls!

© 2008 UC Regents! 76!

rocks list host!
# rocks list host 	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
vizagra: Frontend 1 0 0 -------	
tile-0-1: Tile 2 0 1 -------	
tile-0-0: Tile 2 0 0 -------	
tile-0-2: Tile 2 0 2 -------	
tile-0-3: Tile 2 0 3 -------	
tile-1-3: Tile 2 1 3 -------	
tile-1-2: Tile 2 1 2 -------	
tile-1-1: Tile 2 1 1 -------	
tile-1-0: Tile 2 1 0 -------	
tile-2-0: Tile 2 2 0 -------	
tile-2-1: Tile 2 2 1 -------	
tile-2-2: Tile 2 2 2 -------	
tile-2-3: Tile 2 2 3 -------	
tile-3-0: Tile 2 3 0 -------	
tile-3-1: Tile 2 3 1 -------	
tile-3-2: Tile 2 3 2 -------	
tile-3-3: Tile 2 3 3 -------	
tile-4-0: Tile 2 4 0 -------	
tile-4-1: Tile 2 4 1 -------	
tile-4-2: Tile 2 4 2 -------	
tile-4-3: Tile 2 4 3 -------	

© 2008 UC Regents! 77!

set!
  Modifies entries in the

cluster database!
  Examples:!

  Network Interfaces!
  Appliance Assignment!
  Rack / Rank!

  add-extra-nic!
  Rocks add host interface!
  Rocks set host interface!

© 2008 UC Regents! 78!

start / stop!
 Start and stop

something!
 NULL commands!
 Reserve the verbs for

use on other Rolls!
 Think “abstract base

class” !!

© 2008 UC Regents! 79!

sync!
 Synchronizes the

database state to
software
configuration files!

 Similar to the old
“insert-ethers –
update”!

© 2008 UC Regents! 80!

Extensibility!
 New commands!

 Add directories!
 Add __init__.py code!

 Existing commands!
 Some commands can be extended!
 Plugins!

© 2008 UC Regents! 81!

rocks sync users!
  Run after useradd!

  Populate auto.home!
  Cleanup password file!
  Send 411 files!

  Two plugins!
  Fixnewusers!
  411!

  Partial Ordering!
  Other Rolls can add more

plugins to this command!
  Command must be design for

plugins (not default)!

© 2008 UC Regents! 82!

__init__.py!

© 2008 UC Regents! 83!

411 plugin!

© 2008 UC Regents! 84!

auto.home / passwd plugin!

© 2008 UC Regents! 85!

Argument Processing!
 rocks <verb> <object…> <subject>

<params…>!
 Subject is typed by first object!

 host -> one or more hostname!
 roll -> one or more roll names!

 Params are in key=value form!
 Same as –flag=value but easier to read!

© 2008 UC Regents! 86!

Helper classes and functions!
 ArgumentProcessors!

 Class to parse the subject in a standard way!
 Exists for hosts, rolls, appliances, …!

 Parameters Parsing!
 fillPositionalArgs!
 fillParams!

© 2008 UC Regents! 87!

HostArgumentProcessor!
  Command must derive from
rocks.commands.HostArgumentProcessor!

  self.getHostnames(args)	
  Return a list of hostname as they appear in the cluster

database!
  If args = None all the host in the cluster are returned!
  args can also be a group!

•  Rack0, rack1!
  Or an appliance type!

•  Compute, Tile, …!

© 2008 UC Regents! 88!

© 2008 UC Regents! 89!

args = None	
# rocks list host 	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
vizagra: Frontend 1 0 0 -------	
tile-0-1: Tile 2 0 1 -------	
tile-0-0: Tile 2 0 0 -------	
tile-0-2: Tile 2 0 2 -------	
tile-0-3: Tile 2 0 3 -------	
tile-1-3: Tile 2 1 3 -------	
tile-1-2: Tile 2 1 2 -------	
tile-1-1: Tile 2 1 1 -------	
tile-1-0: Tile 2 1 0 -------	
tile-2-0: Tile 2 2 0 -------	
tile-2-1: Tile 2 2 1 -------	
tile-2-2: Tile 2 2 2 -------	
tile-2-3: Tile 2 2 3 -------	

© 2008 UC Regents! 90!

args = list of hosts!
# rocks list host tile-0-0 10.255.255.253 tile-3-0.local	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
tile-0-0: Tile 2 0 0 -------	
tile-0-1: Tile 2 0 1 -------	
tile-3-0: Tile 2 3 0 -------	

© 2008 UC Regents! 91!

args = rack!
# rocks list host rack2 	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
tile-2-0: Tile 2 2 0 -------	
tile-2-1: Tile 2 2 1 -------	
tile-2-2: Tile 2 2 2 -------	
tile-2-3: Tile 2 2 3 -------	

© 2008 UC Regents! 92!

args = appliance type!
# rocks list host tile 	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
tile-0-0: Tile 2 0 0 -------	
tile-0-1: Tile 2 0 1 -------	
tile-0-2: Tile 2 0 2 -------	
tile-0-3: Tile 2 0 3 -------	
tile-1-0: Tile 2 1 0 -------	
tile-1-1: Tile 2 1 1 -------	
tile-1-2: Tile 2 1 2 -------	
tile-1-3: Tile 2 1 3 -------	
tile-2-0: Tile 2 2 0 -------	
tile-2-1: Tile 2 2 1 -------	
tile-2-2: Tile 2 2 2 -------	

© 2008 UC Regents! 93!

Any combination is fine!
# rocks list host tile-2-0 rack1 frontend	
HOST MEMBERSHIP CPUS RACK RANK COMMENT	
tile-1-0: Tile 2 1 0 -------	
tile-1-1: Tile 2 1 1 -------	
tile-1-2: Tile 2 1 2 -------	
tile-1-3: Tile 2 1 3 -------	
tile-2-0: Tile 2 2 0 -------	
vizagra: Frontend 1 0 0 -------	

© 2008 UC Regents! 94!

ArgumentProcessors!

Class Name! Helper Function!
ApplianceArgumentProcessor! getApplianceNames!
DistributionArgumentProcessor! getDistributionNames!
HostArgumentProcessors! getHostnames!
MembershipArgumentProcessor! getMembershipNames!
NetworkArgumentProcessor! getNetworkNames!
RollArgumentProcessor! getRollNames!

© 2008 UC Regents! 95!

RollArgumentProcessor 

© 2008 UC Regents! 96!

No Parameter!
# rocks list roll 	
NAME VERSION ARCH ENABLED	
viz: 5.0 i386 yes 	
sge: 5.0 i386 yes 	
kernel: 5.0 i386 yes 	
updates: 5.1 i386 yes 	
java: 4.3.2 i386 yes 	
xen: 5.0 i386 yes 	
CentOS: 5.1 i386 yes 	
ganglia: 5.0 i386 yes 	
web-server: 5.0 i386 yes 	
base: 5.0 i386 yes 	
hpc: 5.0 i386 yes 	

© 2008 UC Regents! 97!

Version Parameter!
# rocks list roll version=4.3.2	
NAME VERSION ARCH ENABLED	
java: 4.3.2 i386 yes 	

© 2008 UC Regents! 98!

Summary!
 ArgumentProcessors standardize the

handling of command line subjects!
 Calling the helper function with an empty

list returns all subject in the database!
 HostArgumentProcessor knows about

more than just host names!
 RollArgumentProcessor can filter on

versions!
© 2008 UC Regents! 99!

fillParams!
 Create local variables based on

command parameters (key=value)!
 Argument a list of (key, default) tuples!
 If the parameter is not found on the

command line the default value is used!

© 2008 UC Regents! 100!

rocks create torrent!

© 2008 UC Regents! 101!

rocks add host!

© 2008 UC Regents! 102!

fillPositionalArgs!
  Allows for parameters to have implied keys (just values

on command line)!
  This is an optimization for ease of use, not ease of

software!
  Argument is a list of keys!

  No default value processing, if a key is specified it is required!
  Use this only when a parameter is required!

  Example:!
# rocks set network netmask optiputer netmask=255.255.255.0	
# rocks set network netmask optiputer 255.255.0.0	

© 2008 UC Regents! 103!

rocks set network netmask!

© 2008 UC Regents! 104!

rocks set host interface!

© 2008 UC Regents! 105!

Help and Docstrings!
 The command line is the documentation!

 No more out of date man pages!
 Still needs a cookbook document, but

reference is part of the code!
 Weʼve been looking at this all session!
 Class docstring “””text”””!
 Command line has an XML format!

© 2008 UC Regents! 106!

# rocks list roll help	
rocks list roll [roll]...	

Description:	

	List the status of available rolls.	

Arguments:	

	[roll]	

	List of rolls. This should be the roll base name (e.g., base, hpc,	
	kernel). If no rolls are listed, then status for all the rolls are	
	listed.	

Examples:	

	$ rocks list roll kernel	
	 		
	List the status of the kernel roll	

	$ rocks list roll	

	List the status of all the available rolls	
© 2008 UC Regents! 107!

rocks list roll help!

© 2008 UC Regents! 108!

<arg>!
 Attributes!

 name (required)!
 optional (default = “0”)!
 type (default = “string”)!
 repeat (default = “0”)!

 Example:!
<arg type='string' name='network' repeat='1'> 	
 One or more named networks that should have the

defined netmask.	
</arg>	

© 2008 UC Regents! 109!

<param>!
 Attributes!

 name (required)!
 optional (default = “1”)!
 type (default = “string”)!
 repeat (default = “0”)!

 Example:!
<param type='string' name='iface'>	
	Can be used in place of the iface argument.	

</param>!
© 2008 UC Regents! 110!

<example>!
 Attributes!

 cmd(required)!
 Example:!
<example cmd='set host interface mac compute-0-0

eth1 00:0e:0c:a7:5d:ff'>	
	Sets the MAC Address for the eth1 device on host
compute-0-0.	

</example>	

© 2008 UC Regents! 111!

<related>!
 Example!
!<related>set host interface iface</related>	
	<related>set host interface ip</related>	
	<related>set host interface gateway</related>	
	<related>set host interface module</related>	

© 2008 UC Regents! 112!

Help!
 rocks <verb> <object…> <subject> help!

 Loads the command module!
 Parses the XML docstring!
 Format and output help as 80 column text!

 Debug syntax with format= parameter!

© 2008 UC Regents! 113!

help format=raw!
# rocks list roll help format=raw	
1:	
2:	List the status of available rolls.	
3:		
4:	<arg optional='1' type='string' name='roll' repeat='1'>	
5:	List of rolls. This should be the roll base name (e.g., base, hpc,	
6:	kernel). If no rolls are listed, then status for all the rolls are	
7:	listed.	
8:	</arg>	
9:	
10:	<example cmd='list roll kernel'> 	 		
11:	List the status of the kernel roll	
12:	</example>	
13:		
14:	<example cmd='list roll'>	
15:	List the status of all the available rolls	
16:	</example>	

© 2008 UC Regents! 114!

Help format=parsed!
# rocks list roll help format=parsed	
{'related': [], 'example': [(u'list roll kernel', u'\t\t\n\tList the

status of the kernel roll\n\t'), (u'list roll', u'\n\tList the status
of all the available rolls\n\t')], 'description': u'\n\tList the status
of available rolls.\n\t\n\t', 'param': [], 'arg': [((u'roll',
u'string', 1, 1), u'\n\tList of rolls. This should be the roll base
name (e.g., base, hpc,\n\tkernel). If no rolls are listed, then status
for all the rolls are\n\tlisted.\n\t')]}	

© 2008 UC Regents! 115!

Docbook!
 Roll Usersguide Command Reference is

generated automatically!

# rocks list roll help format=docbook	
<section id="rocks-list-roll" xreflabel="list roll">	
<title>list roll</title>	
<cmdsynopsis>	

	<command>rocks list roll</command>	
	<arg rep="repeat" choice="opt">roll</arg>	

</cmdsynopsis>	
<para>	

	List the status of available rolls.	

</para>	
<variablelist><title>arguments</title>	

	<varlistentry>	

© 2008 UC Regents! 116!

AVOIDING BECOMING A
DEVELOPER!

© 2009 UC Regents! 117!

Philosophy!
  All software is installed

on the local disk!
  Does not require NFS or

non-scalable diskless
technologies!

  Use the native OS
packager for everything!
  Linux = rpm!
  Solaris = pkg!

© 2009 UC Regents! 118!

Violate the Rules!
  You just need a few

packages added and
cannot find or build
packages!

  You want this only on
your cluster and not on
several clusters!

  You still want to avoid
NFS and benefit from
Rocks management!

© 2009 UC Regents! 119!

Get a Directory Tree!
 Build your software from source and

install on the frontend!
 configure!
 make!
  install!

 Or, just untar a binary bundle!

© 2009 UC Regents! 120!

CREATE PACKAGE!
rocks create package!
!<path>!
!<package-name>!

rocks create package!
!/opt/mx!
!mx!

© 2009 UC Regents! 121!

Done!
rpm -qip mx-1.0-1.x86_64.rpm !
Name : mx Relocations: (not relocatable)!

Version : 1.0 Vendor: Rocks Clusters!
Release : 1 Build Date: Tue 12 May 2009 04:40:00 PM

PDT!

Install Date: (not installed) Build Host: vizagra.rocksclusters.org!
Group : System Environment/Base Source RPM: mx-1.0-1.src.rpm!
Size : 17588899 License: University of California!
Signature : (none)!

Summary : A collection of Python software tools.!
Description :!
The mx extensions for Python are a collection of Python software tools!

which enhance Python's usability in many areas.!

© 2009 UC Regents! 122!

ADDING YOUR PACKAGE TO
COMPUTE NODES!

© 2009 UC Regents! 123!

Step 1: Contribute the RPM!
 Your distribution looks for packages from Rolls

and in a contrib area!
 Copy your RPMS into contrib!

cp mx-1.0-1.x86_64.rpm !
!/export/rocks/install/contrib/5.2/
x86_64/RPMS!

© 2009 UC Regents! 124!

Step 2: Extend XML!
cd /export/rocks/install/site-
profiles/5.2/nodes/!

cp skeleton.xml !
!extend-compute.xml!

vi extend-compute.xml!

© 2009 UC Regents! 125!

Add Package Tag!
original!
<kickstart>!

<description>!
Skeleton XML Node!
</description>!

<changelog>!
</changelog>!

<!—!
<package></package>!
-->!

<post>!
</post>!

</kickstart> !

modified (with mx)!
<kickstart>!

<description>!
Skeleton XML Node!
</description>!

<changelog>!
</changelog>!

<package>mx</package>!

<post>!

</post>!

</kickstart> !

© 2009 UC Regents! 126!

Step 3: Rebuild Distribution!
 RPM package is already contributes!
 XML node file is already extended!
 Now we need to rebuild the dist!

 Must be done in /export/rocks/install!

© 2009 UC Regents! 127!

CREATE DISTRO!

cd /export/rocks/install!

rocks create distro!

© 2009 UC Regents! 128!

Step 4: Re-install  
(repeated material 3 slides)!
 PXE Boot!

 Network Boot is first in BIOS boot order!
 Set Rocks Boot action to install!
 Reboot the host!

 Otherwise use old rocks commands or
just hard power cycle the host.!

© 2009 UC Regents! 129!

SET HOST BOOT!
rocks set host boot!
!<host>!
!action=<boot-action>!

rocks set host boot!
!compute-0-0!
!action=install!

© 2009 UC Regents! 130!

RUN HOST!
rocks run host!
!<host>!
!<command>!

rocks run host!
!compute-0-0!
!/sbin/init 6!

© 2009 UC Regents! 131!

Should I Build a Roll?!
contrib & site-profiles!
  Fast and Easy!
  Admin Friendly!

  Difficult to share!
  Difficult to backup/restore!

  Frontend is your
development host!

Roll!
  Takes about 1 day!
  Developer Friendly!

  Easy to share (.iso)!
  Easy to backup/restore!

  Frontend is your
development host!

© 2010 UC Regents! 132!

Break Time!

© 2010 UC Regents! 133!

