
Guidelines!
 We are a small group!
 Interrupt the speaker!
 Ask unrelated question!
 Help us keep this fluid!

 We can re-tool the agenda on-the-fly!
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Community Development!



Topics!
  Community Status!

  Why this is Important!
  Open Source Licensing!
  Contributors and Working Groups!
  Source Code!

  Becoming a Developer!
  Graph and Rolls!
  Attributes!
  Command Line!

  Avoiding becoming a Developer!
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Community Status!



WHY?!
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Rocks is almost 10 years old!!
 Mission accomplished!
 Rocks is the de facto open-source 

clustering solution!
 Great user community!

 2000+ on mailing list!
 Amazing signal to noise ratio!

 Everything from 2 nodes cluster to top 10 
supercomputers!
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Rocks is almost 10 years old!!
 90% of development is!

 NSF (and other grant) funded!
 Located at UC San Diego!

 Need to diversify development!
 More ideas, passion, and focus areas!
 More secure funding!

© 2010 UC Regents! 7!



OPEN SOURCE LICENSING!
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Licensing / Copyrights 
http://www.rocksclusters.org/wordpress/?page_id=48!
  Rocks is entirely open-source!
  BSD Attribution License!

  Standard UNIX open-source!
  Very friendly for derived works!

  We have not changed to the more recent non-attribution 
BSD license!

  Copyrights are owned by University of California 
Regents!

  3rd party code is a mix of licenses and copyrights!
  Most of Rocks bits are 3rd party!!
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Attribution Clause!
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This product includes software 
developed by the Rocks® 
Cluster Group at the San Diego 
Supercomputer Center at the 
University of California, San 
Diego and its contributors. 



Trademark 
invent@ucsd.edu!
 The Rocks name and logo are registered 

trademarks.!
 For fee licensing is available!

 Standard usage!
 Derivative usage (e.g. “ACME Rocks”)!
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Summary!
  Rocks is open-source and free!
  Use it any way you wish!
  Make billions of dollars with it without even buying us a 

single beer!

  Give us attribution!
  License the name for commercial use!

  These two things help keep us funded!
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EARLY COMMUNITY ROLLS!
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Sun Grid Engine!
 Way back in 2004!
 Rocks supported PBS!
 Scalable Systems added SGE support!

 Laurence Liew, Najib Ninaba!
 1st external developers for Rocks!
 Based in Singapore!

 SGE Roll created from this!
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Torque Roll!
 Way back in 2006!
 SGE Roll was the favorite of core team!
 Threatened to drop PBS Support!
 The Computer Center, University of Tromsø!

  Roy Dragseth!
  2nd major external developer!
  Based in Norway!

 Continues to develop and support Torque Roll!
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We were “big” overseas!
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WORKING GROUPS!
First major attempt for actively recruit developers!
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Working Groups!
 Purpose!

 Fill gaps from core development team!
 Handle issues off the core road map!
 Make Rocks a more flexible solution!

 Success Metrics!
 Number of Rolls produced!
 Amount of new Documentation (Wiki, …)!



Software Update WG 
https://wiki.rocksclusters.org/wiki/index.php/Software_Update_(SUWG)!
 Started early 2008!

 Threads on yum updates increased!
 Core team said “donʼt do it”!
 Advocates said “it works for me”!
 WG was recruited to address the issue!

 Best practices defined!
 Exclude lists!
 Additional docs on custom restore Rolls!
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Status!
 Community Interest: High !
 Documentation: Moderate!
 Rolls Produced: None!

 Summary: Some real interest but needs 
leadership.!
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Thumper Working Group  
https://wiki.rocksclusters.org/wiki/index.php/Rocks_on_Thumper!
 Began with Rocks Solaris port!

 Sun funded!
 How to Manage ZFS NAS appliances!
 Specifically Sun Thumper!

 Core team lead effort!
 Used by several groups at UCSD!
 Software is released!
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Status!
 Community Interest: Low !
 Documentation: Good!
 Rolls Produced: Jumpstart!

 Summary: Excellent activity with a small 
UCSD audience.  Needs to build a larger 
user base.!
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Rolls Working Group  
https://wiki.rocksclusters.org/wiki/index.php/Rolls_Working_Group!
 Started early 2009!

 Developing free versions of commercial Rolls!
 Organized by Stanford University!

 Self-organized group of a 3 individuals!
 Good initial offering of Rolls!
 Struggled with mailing list support!
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Status!
 Community Interest: High !
 Documentation: Average!
 Rolls Produced: Good!

 Summary: Excellent start, needs help with 
user support and keeping current with 
Rocks releases.!
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Triton Working Group  
http://tritonresource.sdsc.edu/!
 Started 2009!

 Developing Roll for large production cluster!
 Every piece of SW on system is part of a Roll!
 Includes commercial software!

 Amazing set of Rolls (20+) to be released!
 Triton group is here at SDSC!
 No organized presence on Rocks list!
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Status!
 Community Interest: Good!
 Documentation: Good!
 Rolls Produced: Excellent!

 Summary: Highly productive group, but 
meets weekly with member(s) of Rocks 
core team.  Phil is also their boss.!
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OVERALL GRADE: C-!
Great idea, some good traction, but not what we want!
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What can UCSD do better?!
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  WG phone/video conference!
  WG to Core team!
  WG All hands!

  Need to communicate roadmaps between WGs and 
Core team!
  Ease release tracking!
  No surprises (e.g. Rocks Command Line)!

  Where should support issues go?!
  Main list!
  A new WG list!



Ideas?!
 Docs in dev process!

 Devel guide out of date!
 Mine mailing list for solution!

 Developer Cloning Process!
 Jumpstart guide to development!

 RESOLVED tag on mailing list!
 Bug/Issue searchable database!

 RH is a good example of this!
 IRC!
 AIM Address Book (non-indexed)!
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What can you do better!
 Tell us what you want!

 Complain!
 A lot!
 But, nicely!

 Ask for help to start a new working group!
 Join an existing working group!
 We are starting this today!
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SOURCE CODE!
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Version Control!
 Core team uses CVS!

  Thatʼs what we started with!
  We arenʼt changing anytime soon!

 CVS access available to very few people!
  Too risky!
  Access control is a pain!
  Release management difficult!

 We use Mecurial for all non-core development!
 Mecurial synced to CVS every 10 minutes!!
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Workflow!
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Example!
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$ hg clone http://fyp.rocksclusters.org/hg/rocks-5.3!
destination directory: rocks-5.3!
real URL is http://fyp.rocksclusters.org/hg/
rocks-5.3/!
requesting all changes!
adding changesets!
adding manifests!
adding file changes!
added 1 changesets with 2815 changes to 2815 files!
2815 files updated, 0 files merged, 0 files removed, 
0 files unresolved!



Issues!
 Mecurial is slow!
 Transaction based!

 Any aborted operation rolls back!
 Do not stop the clone!

 Patch sets can be tedious!
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Advantages - Freedom!
 Publish your own repository!
 No need to even commit back to core!
 Commit broke code and only hurt yourself!

 Core Rocks remains stable!
 HG clones innovate!
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Notes!
 For code older than 5.0!

 ftp://ftp.rocksclusters.org/pub/rocks/rocks-src!
 rocks-2.3 to rocks-4.3!

 We are not tied to this workflow!
 We are not tied to HG!

 Other workflow suggestions are solicited!
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Becoming a  Developer!

Resume @ 11:20!
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GRAPH AND ROLLS !
The Rocks engine!
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Rocks Configuration Graph!
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The XML Graph Includes!
  Nodes!

  Single purpose modules!
  Kickstart file snippets (XML tags map to kickstart commands)!
  Approximately 200 node files in Rocks!

  Graph!
  Defines interconnections for nodes!
  Think OOP or dependencies (class, #include)!
  A single default graph file in Rocks!

  Macros!
  SQL Database holds site and node specific state!
  Node files may contain &state; entities (attributes)!
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Composition!
 Aggregate Functionality!

 scripting IsA!
  perl-development!
  python-development!
  tcl-development!
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Traverse by Attributes!
  if x11 == TRUE!

  client IsA x11!
  if rsh == FALSE!

  client IsNotA rsh!

  Most important slide in 
this session!

  RCL allows you to control 
the graph!
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Think of this as Cluster DNA!



ROLL FUNDAMENTALS!
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Cluster Software Stack!
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Rolls Break Apart Rocks!

Rolls: Modifying a Standard System Installer to Support User-Customizable Cluster Frontend Appliances. Greg Bruno, Mason J. Katz, 
Federico D. Sacerdoti, and Phil M. Papadopoulos. IEEE International Conference on Cluster Computing, San Diego, California, Sep. 2004. 



Our Graph Has Colors!
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Rolls are sub-graphs!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices 

them into the system graph file!



STARTING FROM THE EMPTY 
SET!

{ }!
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{ base }!
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{ base, hpc }!
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{ base, hpc, kernel }!
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{ base, hpc, kernel, sge }!
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Simplified Example  
{base, hpc, sge, bio}!
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Two different Clusters!
MPI Cluster::{base, hpc, kernel, sge} Protein Databank::{base, hpc, kernel, pdb} 



ATTRIBUTES!
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Attributes!
 Attributes can be set at 4 levels:!

  Globally!
•  ʻrocks set attrʼ!

  By appliance type!
•  ʻrocks set appliance attrʼ!

  By OS (linux or sunos)!
•  ʻrocks set os attrʼ!

  By host!
•  ʻrocks set host attrʼ!
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Attributes!
 Example, set the public IP address of a remote 

frontend that is used during a ʻcentralʼ 
installation:!

# rocks set host attr vi-1.rocksclusters.org \ 
  Kickstart_PublicAddress 137.110.119.118 
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Attributes!
# rocks list host attr tile-0-0 
HOST      ATTR                                  VALUE                                    SOURCE 
tile-0-0: Info_CertificateCountry               US                                       G      
tile-0-0: Info_CertificateLocality              San Diego                                G      
tile-0-0: Info_CertificateOrganization          CalIT2                                   G      
tile-0-0: Kickstart_DistroDir                   /export/rocks                            G      
tile-0-0: Kickstart_PrivateAddress              10.1.1.1                                 G      
tile-0-0: Kickstart_PrivateBroadcast            10.1.255.255                             G      
tile-0-0: Kickstart_PrivateDNSDomain            local                                    G      
tile-0-0: Kickstart_PrivateDNSServers           10.1.1.1                                 G      
tile-0-0: Kickstart_PrivateGateway              10.1.1.1                                 G      
tile-0-0: Kickstart_PublicDNSServers            132.239.0.252                            G      
tile-0-0: Kickstart_PublicGateway               137.110.119.1                            G      
tile-0-0: Kickstart_PublicHostname              vizagra.rocksclusters.org                G      
tile-0-0: Kickstart_PublicKickstartHost         central.rocksclusters.org                G      
tile-0-0: Kickstart_PublicNTPHost               pool.ntp.org                             G      
tile-0-0: Kickstart_PublicNetmask               255.255.255.0                            G      
tile-0-0: Kickstart_PublicNetmaskCIDR           24                                       G      
tile-0-0: Kickstart_PublicNetwork               137.110.119.0                            G      
tile-0-0: Kickstart_Timezone                    America/Los_Angeles                      G      
tile-0-0: Server_Partitioning                   force-default-root-disk-only             G      
tile-0-0: arch                                  x86_64                                   H      
tile-0-0: hostname                              tile-0-0                                 I      
tile-0-0: rack                                  0                                        I      
tile-0-0: rank                                  0                                        I      
tile-0-0: rocks_version                         5.2                                      G 
tile-0-0: HideBezels                            false                                    G      
tile-0-0: HttpConf                              /etc/httpd/conf                          O      
tile-0-0: HttpConfigDirExt                      /etc/httpd/conf.d                        O      
tile-0-0: HttpRoot                              /var/www/html                            O      
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Edge Conditionals!
 Use attributes to conditionally traverse 

edges of the configuration graph!

 If ʻrshʼ evaluates to ʻtrueʼ, then the edge 
from ʻclientʼ to ʻrshʼ will be traversed!
 Default value is ʻfalseʼ!

<edge from="client" cond="rsh"> 
 <to>rsh</to> 

</edge> 
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Edge Conditionals!
 To set a conditional attribute:!

 Edge conditionals are attributes!
 Can also be set at 4 levels:!

  Globally!
  By appliance type!
  By OS (linux or sunos)!
  By host!

# rocks set attr rsh true 



COMMAND LINE!
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Evil Commands!
Usage: add-extra-nic [-hvv] [-p password] [-u host] [-d database] [--help]!
 [--list-rcfiles] [--list-project-info] [--verbose] [--dump] [--del] [--list]!
 [--verbose] [--no-update] [--no-modify] [--dryrun] [--rcfile arg] [--host host]!
 [--password password] [--db database] [--user host]!
 [--if interface (default: eth1)] [--mac mac address]!
 [--module linux driver module name] [--ip ip address]!
 [--netmask netmask (default /24)] [--gateway ip address of gateway]!
 [--name hostname on new interface] [--site client ip] node!

Usage: rocks-dist [-hvcpv] [-p password] [-u host] [-d database] [-a arch]!
 [-d dirname] [-g path] [-l lang] [-r release] [--help] [--list-rcfiles]!
 [--list-project-info] [--verbose] [--copy] [--debug] [--graph-draw-invis-edges]!
 [--graph-draw-order] [--graph-draw-edges] [--graph-draw-key] [--graph-draw-all]!
 [--graph-draw-landscape] [--install] [--verbose] [--with-rolls-only] [--clean]!
 [--notorrent] [--rcfile arg] [--host host] [--password password]!
 [--db database] [--user host] [--arch architecture] [--comps path]!
 [--dist dirname] [--graph-draw-size arg] [--graph-draw-format arg]!
 [--mirror-dir dirname] [--mirror-host hostname] [--root dirname]!
 [--cdrom /mnt/cdrom] [--with-roll rollname-rollversion]!
 [--path single path item] command !
Available commands:!
dist dvd makecontrib makesitenodes copycd usb copyroll cdrom paths graph dist2mirror!
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Command Line as API!
  Lack of consistency in Rocks commands!

  add-extra-nic (15 flags)!
  411put!
  rocks-dist!
  dbreport (~ a dozen reports)!

 Not extensible to other groups!
  How do I add a flag to an existing command?!
  How do I add a new command?!
  How do I document my command?!
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Do Over!
  Consistent!

  Interface!
  Argument parsing!
  Usage / Help!

  Extensible!
  Easy to add commands (3rd party rolls)!
  Easy to modify commands!

  Easy to guess the right command!
  Purge all –flags from Rocks!
  Hide the SQL database (and underlying schema)!
  Inspired by Trac!
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Verb Based!
  “add”, “set”, “enable”, …!

  Modify the cluster 
database!

  “list”, “dump”, “report”!
  Inspect the cluster 

database!
 About 20 verbs in the 

command line so far!
 You can even add your 

own!
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Grammar!
  rocks <verb> <object…> <subject> <params…>!
 Object is general to specific!

  “host” “interface”!
  “network” “subnet”!
  “viz” “layout”!

 Subject is typed!
  host!
  appliance!
  network!
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Implementation!
 Python!

  Similar to existing dbreport code!
  Very small modules!

 Command line is identical to the directory 
hierarchy!
  Verbs are directories!
  Objects are directories!
  Subjects are __init__.py files!

 Commands are added by adding directories!
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rocks add host pxeaction 	



Rolls Can Add Commands!
 Similar to the 

configuration graph!
 Rolls can add 

command line!
  Files : commands!
  Directories : verbs and 

objects!
 Think hard before 

adding another verb!
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add!
 Creates new entries 

in the cluster 
database!

 Examples:!
  Hosts!
  Appliances!
  Rolls!
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rocks add distribution!
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dump!
 Returns cluster 

database information 
in the form of rocks 
command lines!

 Examples:!
  Hosts!
  Network!

 Same as –dump flag 
on insert-ethers!
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rocks dump host!
# rocks dump host	
/opt/rocks/bin/rocks add host vizagra cpus=1 rack=0 rank=0 membership="Frontend"	
/opt/rocks/bin/rocks add host tile-0-1 cpus=2 rack=0 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-0 cpus=2 rack=0 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-2 cpus=2 rack=0 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-0-3 cpus=2 rack=0 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-3 cpus=2 rack=1 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-2 cpus=2 rack=1 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-1 cpus=2 rack=1 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-1-0 cpus=2 rack=1 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-0 cpus=2 rack=2 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-1 cpus=2 rack=2 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-2 cpus=2 rack=2 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-2-3 cpus=2 rack=2 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-0 cpus=2 rack=3 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-1 cpus=2 rack=3 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-2 cpus=2 rack=3 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-3-3 cpus=2 rack=3 rank=3 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-0 cpus=2 rack=4 rank=0 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-1 cpus=2 rack=4 rank=1 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-2 cpus=2 rack=4 rank=2 membership="Tile"	
/opt/rocks/bin/rocks add host tile-4-3 cpus=2 rack=4 rank=3 membership="Tile"	
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list!
 Reports information 

in human readable 
format!

 No side-effects on 
the database!

 Examples:!
  Hosts!
  Appliances!
  Rolls!
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rocks list host!
# rocks list host 	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
vizagra:  Frontend   1    0    0    -------	
tile-0-1: Tile       2    0    1    -------	
tile-0-0: Tile       2    0    0    -------	
tile-0-2: Tile       2    0    2    -------	
tile-0-3: Tile       2    0    3    -------	
tile-1-3: Tile       2    1    3    -------	
tile-1-2: Tile       2    1    2    -------	
tile-1-1: Tile       2    1    1    -------	
tile-1-0: Tile       2    1    0    -------	
tile-2-0: Tile       2    2    0    -------	
tile-2-1: Tile       2    2    1    -------	
tile-2-2: Tile       2    2    2    -------	
tile-2-3: Tile       2    2    3    -------	
tile-3-0: Tile       2    3    0    -------	
tile-3-1: Tile       2    3    1    -------	
tile-3-2: Tile       2    3    2    -------	
tile-3-3: Tile       2    3    3    -------	
tile-4-0: Tile       2    4    0    -------	
tile-4-1: Tile       2    4    1    -------	
tile-4-2: Tile       2    4    2    -------	
tile-4-3: Tile       2    4    3    -------	
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set!
  Modifies entries in the 

cluster database!
  Examples:!

  Network Interfaces!
  Appliance Assignment!
  Rack / Rank!

  add-extra-nic!
  Rocks add host interface!
  Rocks set host interface!
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start / stop!
 Start and stop 

something!
 NULL commands!
 Reserve the verbs for 

use on other Rolls!
 Think “abstract base 

class” !!
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sync!
 Synchronizes the 

database state to 
software 
configuration files!

 Similar to the old 
“insert-ethers –
update”!
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Extensibility!
 New commands!

 Add directories!
 Add __init__.py code!

 Existing commands!
 Some commands can be extended!
 Plugins!
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rocks sync users!
  Run after useradd!

  Populate auto.home!
  Cleanup password file!
  Send 411 files!

  Two plugins!
  Fixnewusers!
  411!

  Partial Ordering!
  Other Rolls can add more 

plugins to this command!
  Command must be design for 

plugins (not default)!
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__init__.py!
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411 plugin!
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auto.home / passwd plugin!
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Argument Processing!
 rocks <verb> <object…> <subject> 

<params…>!
 Subject is typed by first object!

 host -> one or more hostname!
 roll -> one or more roll names!

 Params are in key=value form!
 Same as –flag=value but easier to read!
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Helper classes and functions!
 ArgumentProcessors!

 Class to parse the subject in a standard way!
 Exists for hosts, rolls, appliances, …!

 Parameters Parsing!
 fillPositionalArgs!
 fillParams!
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HostArgumentProcessor!
  Command must derive from 
rocks.commands.HostArgumentProcessor!

  self.getHostnames(args)	
  Return a list of hostname as they appear in the cluster 

database!
  If args = None all the host in the cluster are returned!
  args can also be a group!

•  Rack0, rack1!
  Or an appliance type!

•  Compute, Tile, …!
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args = None	
# rocks list host        	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
vizagra:  Frontend   1    0    0    -------	
tile-0-1: Tile       2    0    1    -------	
tile-0-0: Tile       2    0    0    -------	
tile-0-2: Tile       2    0    2    -------	
tile-0-3: Tile       2    0    3    -------	
tile-1-3: Tile       2    1    3    -------	
tile-1-2: Tile       2    1    2    -------	
tile-1-1: Tile       2    1    1    -------	
tile-1-0: Tile       2    1    0    -------	
tile-2-0: Tile       2    2    0    -------	
tile-2-1: Tile       2    2    1    -------	
tile-2-2: Tile       2    2    2    -------	
tile-2-3: Tile       2    2    3    -------	
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args = list of hosts!
# rocks list host tile-0-0 10.255.255.253 tile-3-0.local	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
tile-0-0: Tile       2    0    0    -------	
tile-0-1: Tile       2    0    1    -------	
tile-3-0: Tile       2    3    0    -------	
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args = rack!
# rocks list host rack2                                 	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
tile-2-0: Tile       2    2    0    -------	
tile-2-1: Tile       2    2    1    -------	
tile-2-2: Tile       2    2    2    -------	
tile-2-3: Tile       2    2    3    -------	
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args = appliance type!
# rocks list host tile 	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
tile-0-0: Tile       2    0    0    -------	
tile-0-1: Tile       2    0    1    -------	
tile-0-2: Tile       2    0    2    -------	
tile-0-3: Tile       2    0    3    -------	
tile-1-0: Tile       2    1    0    -------	
tile-1-1: Tile       2    1    1    -------	
tile-1-2: Tile       2    1    2    -------	
tile-1-3: Tile       2    1    3    -------	
tile-2-0: Tile       2    2    0    -------	
tile-2-1: Tile       2    2    1    -------	
tile-2-2: Tile       2    2    2    -------	
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Any combination is fine!
# rocks list host tile-2-0 rack1 frontend	
HOST      MEMBERSHIP CPUS RACK RANK COMMENT	
tile-1-0: Tile       2    1    0    -------	
tile-1-1: Tile       2    1    1    -------	
tile-1-2: Tile       2    1    2    -------	
tile-1-3: Tile       2    1    3    -------	
tile-2-0: Tile       2    2    0    -------	
vizagra:  Frontend   1    0    0    -------	
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ArgumentProcessors!

Class Name! Helper Function!
ApplianceArgumentProcessor! getApplianceNames!
DistributionArgumentProcessor! getDistributionNames!
HostArgumentProcessors! getHostnames!
MembershipArgumentProcessor! getMembershipNames!
NetworkArgumentProcessor! getNetworkNames!
RollArgumentProcessor! getRollNames!

© 2008 UC Regents! 95!



RollArgumentProcessor 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No Parameter!
# rocks list roll     	
NAME        VERSION ARCH ENABLED	
viz:        5.0     i386 yes    	
sge:        5.0     i386 yes    	
kernel:     5.0     i386 yes    	
updates:    5.1     i386 yes    	
java:       4.3.2   i386 yes    	
xen:        5.0     i386 yes    	
CentOS:     5.1     i386 yes    	
ganglia:    5.0     i386 yes    	
web-server: 5.0     i386 yes    	
base:       5.0     i386 yes    	
hpc:        5.0     i386 yes 	
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Version Parameter!
# rocks list roll version=4.3.2	
NAME  VERSION ARCH ENABLED	
java: 4.3.2   i386 yes 	
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Summary!
 ArgumentProcessors standardize the 

handling of command line subjects!
 Calling the helper function with an empty 

list returns all subject in the database!
 HostArgumentProcessor knows about 

more than just host names!
 RollArgumentProcessor can filter on 

versions!
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fillParams!
 Create local variables based on 

command parameters (key=value)!
 Argument a list of (key, default) tuples!
 If the parameter is not found on the 

command line the default value is used!
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rocks create torrent!
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rocks add host!
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fillPositionalArgs!
  Allows for parameters to have implied keys (just values 

on command line)!
  This is an optimization for ease of use, not ease of 

software!
  Argument is a list of keys!

  No default value processing, if a key is specified it is required!
  Use this only when a parameter is required!

  Example:!
# rocks set network netmask optiputer netmask=255.255.255.0	
# rocks set network netmask optiputer 255.255.0.0	
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rocks set network netmask!
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rocks set host interface!
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Help and Docstrings!
 The command line is the documentation!

 No more out of date man pages!
 Still needs a cookbook document, but 

reference is part of the code!
 Weʼve been looking at this all session!
 Class docstring “””text”””!
 Command line has an XML format!
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# rocks list roll help	
rocks list roll [roll]...	

Description:	

	List the status of available rolls.	

Arguments:	

	[roll]	

	List of rolls. This should be the roll base name (e.g., base, hpc,	
	kernel). If no rolls are listed, then status for all the rolls are	
	listed.	

Examples:	

	$ rocks list roll kernel	
	 		
	List the status of the kernel roll	

	$ rocks list roll	

	List the status of all the available rolls	
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rocks list roll help!

© 2008 UC Regents! 108!



<arg>!
 Attributes!

 name (required)!
 optional (default = “0”)!
 type (default = “string”)!
 repeat (default = “0”)!

 Example:!
<arg type='string' name='network' repeat='1'> 	
  One or more named networks that should have the 

defined netmask.	
</arg>	
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<param>!
 Attributes!

 name (required)!
 optional (default = “1”)!
 type (default = “string”)!
 repeat (default = “0”)!

 Example:!
<param type='string' name='iface'>	
	Can be used in place of the iface argument.	

</param>!
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<example>!
 Attributes!

 cmd(required)!
 Example:!
<example cmd='set host interface mac compute-0-0 

eth1 00:0e:0c:a7:5d:ff'>	
	Sets the MAC Address for the eth1 device on host 
compute-0-0.	

</example>	
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<related>!
 Example!
!<related>set host interface iface</related>	
	<related>set host interface ip</related>	
	<related>set host interface gateway</related>	
	<related>set host interface module</related>	
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Help!
 rocks <verb> <object…> <subject> help!

 Loads the command module!
 Parses the XML docstring!
 Format and output help as 80 column text!

 Debug syntax with format= parameter!
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help format=raw!
# rocks list roll help format=raw	
1:	
2:	List the status of available rolls.	
3:		
4:	<arg optional='1' type='string' name='roll' repeat='1'>	
5:	List of rolls. This should be the roll base name (e.g., base, hpc,	
6:	kernel). If no rolls are listed, then status for all the rolls are	
7:	listed.	
8:	</arg>	
9:	
10:	<example cmd='list roll kernel'> 	 		
11:	List the status of the kernel roll	
12:	</example>	
13:		
14:	<example cmd='list roll'>	
15:	List the status of all the available rolls	
16:	</example>	
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Help format=parsed!
# rocks list roll help format=parsed	
{'related': [], 'example': [(u'list roll kernel', u'\t\t\n\tList the 

status of the kernel roll\n\t'), (u'list roll', u'\n\tList the status 
of all the available rolls\n\t')], 'description': u'\n\tList the status 
of available rolls.\n\t\n\t', 'param': [], 'arg': [((u'roll', 
u'string', 1, 1), u'\n\tList of rolls. This should be the roll base 
name (e.g., base, hpc,\n\tkernel). If no rolls are listed, then status 
for all the rolls are\n\tlisted.\n\t')]}	
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Docbook!
 Roll Usersguide Command Reference is 

generated automatically!

# rocks list roll help format=docbook	
<section id="rocks-list-roll" xreflabel="list roll">	
<title>list roll</title>	
<cmdsynopsis>	

	<command>rocks list roll</command>	
	<arg rep="repeat" choice="opt">roll</arg>	

</cmdsynopsis>	
<para>	

	List the status of available rolls.	

</para>	
<variablelist><title>arguments</title>	

	<varlistentry>	
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AVOIDING BECOMING A 
DEVELOPER!
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Philosophy!
  All software is installed 

on the local disk!
  Does not require NFS or 

non-scalable diskless 
technologies!

  Use the native OS 
packager for everything!
  Linux = rpm!
  Solaris = pkg!

© 2009 UC Regents! 118!



Violate the Rules!
  You just need a few 

packages added and 
cannot find or build 
packages!

  You want this only on 
your cluster and not on 
several clusters!

  You still want to avoid 
NFS and benefit from 
Rocks management!
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Get a Directory Tree!
 Build your software from source and 

install on the frontend!
 configure!
 make!
  install!

 Or, just untar a binary bundle!
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CREATE PACKAGE!
rocks create package!
!<path>!
!<package-name>!

rocks create package!
!/opt/mx!
!mx!
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Done!
# rpm -qip mx-1.0-1.x86_64.rpm !
Name        : mx                           Relocations: (not relocatable)!

Version     : 1.0                               Vendor: Rocks Clusters!
Release     : 1                             Build Date: Tue 12 May 2009 04:40:00 PM 

PDT!

Install Date: (not installed)               Build Host: vizagra.rocksclusters.org!
Group       : System Environment/Base       Source RPM: mx-1.0-1.src.rpm!
Size        : 17588899                         License: University of California!
Signature   : (none)!

Summary     : A collection of Python software tools.!
Description :!
The mx extensions for Python are a collection of Python software tools!

which enhance Python's usability in many areas.!
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ADDING YOUR PACKAGE TO 
COMPUTE NODES!
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Step 1: Contribute the RPM!
 Your distribution looks for packages from Rolls 

and in a contrib area!
 Copy your RPMS into contrib!

cp mx-1.0-1.x86_64.rpm !
!/export/rocks/install/contrib/5.2/
x86_64/RPMS!
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Step 2: Extend XML!
cd /export/rocks/install/site-
profiles/5.2/nodes/!

cp skeleton.xml !
!extend-compute.xml!

vi extend-compute.xml!
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Add Package Tag!
original!
<kickstart>!

<description>!
Skeleton XML Node!
</description>!

<changelog>!
</changelog>!

<!—!
<package></package>!
-->!

<post>!
</post>!

</kickstart> !

modified (with mx)!
<kickstart>!

<description>!
Skeleton XML Node!
</description>!

<changelog>!
</changelog>!

<package>mx</package>!

<post>!

</post>!

</kickstart> !
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Step 3: Rebuild Distribution!
 RPM package is already contributes!
 XML node file is already extended!
 Now we need to rebuild the dist!

 Must be done in /export/rocks/install!
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CREATE DISTRO!

cd /export/rocks/install!

rocks create distro!
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Step 4: Re-install  
(repeated material 3 slides)!
 PXE Boot!

 Network Boot is first in BIOS boot order!
 Set Rocks Boot action to install!
 Reboot the host!

 Otherwise use old rocks commands or 
just hard power cycle the host.!
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SET HOST BOOT!
rocks set host boot!
!<host>!
!action=<boot-action>!

rocks set host boot!
!compute-0-0!
!action=install!
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RUN HOST!
rocks run host!
!<host>!
!<command>!

rocks run host!
!compute-0-0!
!/sbin/init 6!
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Should I Build a Roll?!
contrib & site-profiles!
  Fast and Easy!
  Admin Friendly!

  Difficult to share!
  Difficult to backup/restore!

  Frontend is your 
development host!

Roll!
  Takes about 1 day!
  Developer Friendly!

  Easy to share (.iso)!
  Easy to backup/restore!

  Frontend is your 
development host!
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Break Time!
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