
© 2009 UC Regents 1

Nuts and Bolts: Developing
Rolls

© 2009 UC Regents 2

 How do you reliably add and
configure (complex) software
in a cluster environment?

3

Rocks Philosophy
 Weʼve developed a “cluster compiler”

 XML framework + XML parser + kickstart
(Jumpstart for Solaris) file generator

 Source code + preprocessor + linker

 Think about “programming your cluster”
 Not “administering your cluster”

© 2009 UC Regents

Purpose of Rolls
 Capture what the expert would do “by

hand” for a particular subsystem and
automate it.

 Enable others to extend the system to
provide completely new functionality

 Make the clustered system reliable and
reproducible

© 2009 UC Regents 4

5

Whatʼs in a Roll
1.  Software Packages in native OS Distribution

Format
  RPMs for RHEL and Derivatives
  PKG format for Solaris

2.  Description of the set(s) packages to
install on each node type (Appliance)

3.  Configuration of installed software
  What to do when a node is added/removed
  Where is that Server?
  What specific options should be included

© 2009 UC Regents

6

As Delivered – OS Distributions
are both Static and Monolithic

RPMS

yum
create
repo

© 2009 UC Regents

© 2009 UC Regents 7

Bootstrapping on a Frontend (w/
o a server in the sky)
  Problem: To make the frontend user-customizable at

installation time, we needed a mechanism that could
accept new packages

  And, we still wanted to leverage the RedHat installer
(Anaconda)
  We donʼt want to be in the installer business

  Solution: Our implementation makes the RedHat
installer “think” it is just installing a monolithic RedHat
distribution

© 2009 UC Regents 8

Just in time Package Repository

  How do you make all the packages above look like a monolithic
distribution?
  Easy! Just run “yum create repo” at release time! (And Burn a DVD)

  But, how do you do it when some of the above blocks are optional and/or
unknown?
  An “unknown” block is one produced after the release or by a third-party

Rocks Workhorse: Binding a New
Distribution

 rocks create distro

 Called at install time after you have
inserted all roll RPMS have been copied

 Called on the installed system, whenever
an update to the distribution is required

 (Rolls can supply updated RPMs so that
you can build an up-to-date system)

© 2009 UC Regents 9

© 2009 UC Regents 10

Rolls Function and Value

  Function: Rolls extend/modify stock RedHat
  Value: Third parties can extend/modify Rocks

  Rolls can be optional.
  Doesnʼt solve does Roll X interoperate with Roll Y

Part I: Packages

© 2009 UC Regents 11

Packages
  Rolls require packages to be in native OS

format (RPM, Solaris pkg)
 The Good

  Inspect software with native OS tools
  Can install “by hand” using OS tools

 The Bad
  You have to make your software into a package

(only seems like a big hill)
  Package Mechanisms can cause odd behavior

© 2009 UC Regents 12

Our Philosophy on Packages
 We use packages as a transport
 Very little (none as a default) is done in

the package %post section
 This is what the Rocks node files are used for

 Stay away from explicitly creating “spec”
files

 Make is your friend (ours too)

© 2009 UC Regents 13

Make requirements
 We support building only a frontend node

(that may change)

 Faith
 There is large set of included make rules that

allow us to quickly package software
 You have to trust what is doing.

© 2009 UC Regents 14

Different Ways For Packaging
From Source
 Build software by hand, then point

 Rocks create package at the directory
 Build an RPM Spec file
 Use the Rocks-supplied Make

Infrastructure

© 2009 UC Regents 15

Creating a Roll from a template
wget --reject "index.html*" -np -r –nH --cut-dirs=2 \

http://fyp.rocksclusters.org/templates/5.1

© 2009 UC Regents 16

17

Building an RPM
 Short story

  Go to /export/site-roll/rocks/src/roll on a Rocks
Frontend

  Make a new roll from a ʻtemplateʼ roll
  Download the source tarball
  Update a description file (version.mk)
  Execute: make rpm

•  Assumes tarball adheres to ʻconfigure, make, make installʼ

© 2009 UC Regents

Using Rocks Make Environment
  Rocks frontend has the tooling to build rools
  cd /export/site-roll/rocks/src/roll/
  Letʼs Make an RPM ---
  First, make a template for a new roll
#wget --reject "index.html*" -np -r –nH --cut-dirs=2 \

http://fyp.rocksclusters.org/templates/5.1
/opt/rocks/share/devel/src/roll/bin/make-roll-dir.py --

name valgrind --version 3.3.0
ls valgrind
graphs Makefile nodes src version.mk

  valgrind/src/valgrind has what you need to make
an rpm © 2009 UC Regents 18

src/valgrind – a working
example
cd valgrind/src/valgrind
wget

http://valgrind.org/downloads/valgrind-3.3.0.tar.bz2
bunzip2 valgrind.*.bz2; gzip valgrind.tar
rm *.spec.in
edit version.mk so that
TARBALL_POSTFIX = tar.gz
edit Makefile and undefine ROCKSROOT
make package
ls ../../RPMS/x86_64/valgrind-3.3.0-1.x86_64.rpm
../../RPMS/x86_64/valgrind-3.3.0-1.x86_64.rpm

That’s it….. Works because valgrind is built using
“./configure; make; make install”

© 2009 UC Regents 19

Do it!

© 2009 UC Regents 20

There is “magic” here
 We use the native OS Package as a

transport
 rpmbuild as the “package builder”

•  Needs an rpm spec file to drive it
•  We build a generic spec file automatically

 Standard RPM file tree needs the
following directories to work properly

BUILD SOURCES SPECS

© 2009 UC Regents 21

Step 0 of Magic Create a
Standard SPEC File
 Creates a standard Redhat SPEC file, eg.
Source: valgrind-3.3.0.tar.gz

Buildroot: `pwd`/valgrind.buildroot

%prep

 (unpack the tarball created in step 1)

%build
 (call make build) Makefile is the src/

valgrind Makefile

%install

 (call make install)

© 2009 UC Regents 22

Step 1 of Magic – Create a
Source File to go in SOURCES
1.  Automatically creates a tarball of the

current directory. Calls this <name>-
<version>.tar.gz

2.  Copies this file into the SOURCES
Directory
* contains this complete directory
including the “real” software tarball

© 2009 UC Regents 23

Making the SOURCES file --

© 2009 UC Regents 24

[root@rocks-76 valgrind]# tree
.
|-- Makefile
|-- valgrind-3.3.0.tar.gz
`-- version.mk

valgrind-3.3.0.tar.gz

<rollname>/SOURCES/valgrind-3.3.0.tar.gz

Step 3 of Magic: The BUILD
Directory

© 2009 UC Regents 25

valgrind-3.3.0.tar.gz

<rollname>/BUILD/valgrind-3.3.0
untar

[root@rocks-76 BUILD]# tree
.
`-- valgrind-3.3.0
 |-- Makefile
 |-- valgrind-3.3.0.tar.gz
 `-- version.mk

SPEC File Calls
This Makefile
for %build,
%install

You can intercept stages in the
process

 Before the tarball is made
 Add patches, if needed
 Many examples, check any of the Rocks

core rolls

© 2009 UC Regents 26

When RPM goes Wrong
  Symptom – Iʼve added an RPM an now my node

installation is completely broken, what happened?
  Observe: watch order that packages are installed on node (via

rocks-console)
  IF: packages are installed in alphabetical order then this

package is breaking Anacondaʼs dependency ordering
  Fix Need to Turn RPM Auto Requires/Provides off

  In version.mk add
•  RPM.EXTRAS=AutoReqProv:No

  Rebuild rpm

© 2009 UC Regents 27

When RPM goes Wrong
 Symptom: RPM is stripping a (prebuilt) binary

making it useless
 Solution: RPM hacking.

 Redefine an RPM macro
 Edit version.mk add

RPM.EXTRAS=%define __os_install_post /usr/lib/rpm/brp-compress

 Rebuild rpm

© 2009 UC Regents 28

Part II: Defining Which
Packages go Where

© 2009 UC Regents 29

Graph Review

© 2009 UC Regents 30

© 2009 UC Regents 31

Install Rocks 
Base Graph

Basic Instructions that
define all Rocks Appliances

Rolls have packages and
graphs

© 2009 UC Regents 32

Base + 
 Rolls

© 2009 UC Regents 33

Compute
Root

  Traverse a graph to build up a
kickstart file (done at kickstart
time)

  Flexible
  Easy to share functionality

between disparate node types

Frontend
Root

© 2009 UC Regents 34

Use Graph Structure to Dissect
Distribution

  Use ʻnodesʼ and ʻedgesʼ to
build a customized kickstart
file

  Nodes contain portion of
kickstart file
  Can have a ʻmainʼ, ʻpackageʼ

and ʻpostʼ section in node file
  Edges used to coalesce node

files into one kickstart file

© 2009 UC Regents 35

Why We Use A Graph
 A graph makes it easy to ʻspliceʼ in new nodes
 Each Roll contains its own nodes and splices

them into the system graph file

XML Files
 We use XML files to define the nodes in

the graph
 What packages to install
 What to do at <post> installation

 We also use XML files to define the
graph structure

© 2009 UC Regents 36

Node and Graph Dirs in Roll

© 2009 UC Regents 37

[root@rocks-76 valgrind]#
tree
.
|-- Makefile
|-- graphs
| `-- default
| `-- valgrind.xml
|-- nodes
| `-- valgrind.xml
|-- src
| |-- Makefile
| |-- usersguide
| | `-- valgrind
| |-- Makefile
| |--
valgrind-3.3.0.tar.gz
| `-- version.mk

Unimaginative Names.

© 2009 UC Regents 38

<package> Tag
  <package>java</package>

  Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ʻjavaʼ.

  <package arch=“x86_64”>java</package>
  Only install this package on x86_64 architectures

  <package arch=“i386,x86_64”>java</package>

<package>newcastle</package>
<package>stone-pale</package>
<package>valgrind</package>

%packages
newcastle
stone-pale
valgrind

Common Splitting of Node Files
 <roll>-server.xml

 Things you install and configure only on
Frontends

 <roll>-client.xml
 Things you install and configure only on

“client” nodes (eg. Compute, NAS, VM-
containers, …)

 <roll>-common.xml
 Things installed everywhere

© 2009 UC Regents 39

© 2009 UC Regents 40

Graph Edges: <edge>
  <edge> attributes

  from
•  Required. The name of a node at end of the edge

•  <edge from=“base” to=“autofs”/>
  to

•  Required. The name of a node at the head of an edge
  arch

•  Optional. Which architecture should follow this edge. Default is
all.

  gen
•  Optional. Which generator should follow this edge. Default is

“kgen”

(IN 5.2 Edges can have conditionals based on attributes)

© 2009 UC Regents 41

Graph Edges
 <edge from=“security-server” to=“central”/>

<edge from=“client”>
<to arch=“i386,x86_64”>grub-client</to>
<to>autofs-client</to>
<to>installclass-client</to>

</edge>

© 2009 UC Regents 42

Graph Ordering
  Added recently to give us control over when node <post>

sections are run
•  <order head="database">

•  <tail>database-schema</tail>
•  </order>

  database node appears before database-schema in all kickstart
files.

  Special HEAD and TAIL nodes represent “first” and “last” (post sections
that you want to run first/last)

•  <order head=“installclass” tail=“HEAD”/> BEFORE HEAD

•  <order head=“TAIL” tail=“postshell”/> AFTER TAIL

© 2009 UC Regents 43

Graph Ordering: <order>
  <order> attributes

  head
•  Required. The name of a node whose <post> section will appear

BEFORE in the kickstart file.
  tail

•  Required. The name of a node whose <post> section will appear AFTER
in the kickstart file.

•  <order head=“grub” tail=“grub-server”/>
  arch

•  Optional. Which architecture should follow this edge. Default is all.
  gen

•  Optional. Which generator should follow this edge. Default is “kgen”

Valgrind Example: Connecting
into the graph
vi graphs/default/valgrind.xml (and add:)
 <edge from="base">
 <to>valgrind</to>
 </edge>

This tells us that Valgrind should be on all
appliances.

© 2009 UC Regents 44

Roll is complete
 Can use it as a roll to build frontends
 A straightforward test if you have a

compute node
rocks add roll valgrind-*.iso
#rocks enable roll valgrind
(cd /export/rocks/install; rocks create distro)
rocks list host profile compute-0-0 | grep valgrind
./nodes/valgrind.xml (valgrind)
roll-valgrind-usersguide
valgrind

© 2009 UC Regents 45

Where the art is: <post>
 Package Creation ranges from trivial to

not-so-trivial
 Defining where packages go, some on

this appliance, some on that.
Straightforward

 But, the post section …

© 2009 UC Regents 46

© 2009 UC Regents 47

Nodes Post Section
  Scripts have minimal $PATH (/bin, /usr/bin)
  Error reporting is minimal

  Write to personal log file if you need debugging

  Not all services are up. Network is however.
  Order tag is useful to place yourself favorably relative to other

services
  Can have multiple <post> sections in a single node

© 2009 UC Regents 48

Nodes XML Tools: <post>
  <post> attributes

  arch
•  Optional. Specifies which architectures to apply package.

  arg
•  Optional. Anaconda arguments to %post

•  --nochroot (rare): operate script in install environment,
not target disk.

•  --interpreter: specifies script language

•  <post arg=“--nochroot --interpreter /usr/bin/python”>

© 2009 UC Regents 49

Post Example: PXE config
<post arch=“x86_64,i386”>
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name=“/tftpboot/pxe../default”>
default ks
prompt 0
label ks

 kernel vmlinuz
 append ks inird=initrd.img……

</file>
</post>
…

</post>

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

…RCS…
cat > /tftpboot/pxe../default << EOF
default ks
prompt 0
…
EOF
..RCS…

for an x86_64 machine:

© 2009 UC Regents 50

A Real Node file: ssh
<kickstart>

 <description>
 Enable SSH
 </description>

 <package>openssh/package>
 <package>openssh-clients</package>
 <package>openssh-server</package>
 <package>openssh-askpass</package>

<post>

<file name="/etc/ssh/ssh_config">
Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

© 2009 UC Regents 51

When Things Go Wrong
 Test your Kickstart Graph

 Check XML syntax: xmllint
 Make a kickstart file

•  Make kickstart file as a node will see it
rocks list host profile compute-0-0

© 2009 UC Regents 52

When Things Go Wrong
  Test your Kickstart Graph

  Check XML syntax: xmllint
•  # cd sweetroll/nodes
•  # xmllint --noout sweetroll.xml

<?xml version="1.0" standalone="no"?>

<kickstart>
 <description>
The sweet roll. This roll is just sweet!
 <description>
</kickstart>

xmllint --noout sweetroll.xml

sweetroll.xml:7: parser error : Opening and
ending tag mismatch: description line 6 and
kickstart
</kickstart>
 ^

© 2009 UC Regents 53

Nodes XML Tools: <var>
 Get Variables from Database

  <var name=“Kickstart_PrivateAddress”/>
  <var name=“Node_Hostname”/>

 Can grab any value from the app_globals
database table

 (in 5.2 replaced by Attributes!)

10.1.1.1
compute-0-0

© 2009 UC Regents 54

<var> values from app_globals

 Combine “Service” and “Component”
  For example, Kickstart_PublicAddress

Adding your own vars
 rocks add var service= component=

value=

 Easy place to put variables to reference in
your xml files.

© 2009 UC Regents 55

© 2009 UC Regents 56

Nodes XML Tools: <var>
  <var> attributes

  name
•  Required. Format is “Service_Component”
•  Service and Component relate to column names in the

app_global database table.
  val

•  Optional. Sets the value of this variable
•  <var name=“Info_ClusterName” val=“Seinfeld”/>

  ref
•  Optional. Set this variable equal to another

•  <var name=“Info_Weather” ref=“Info_Forecast”/>

© 2009 UC Regents 57

Nodes XML Tools: <eval>
 Do processing on the frontend when the

kickstart file is generated (by the CGI
script):
  <eval shell=“bash”>

 To insert the Rocks release info in the
kickstart file:

Rocks release 4.2.1 (Cydonia) <eval shell=“bash”>
cat /etc/rocks-release
</eval>

© 2009 UC Regents 58

Nodes XML Tools: <eval>
  <eval> attributes

  shell
•  Optional. The interpreter to use. Default “sh”

  mode
•  Optional. Value is quote or xml. Default of quote specifies for kpp

to escape any XML characters in output.
•  XML mode allows you to generate other tags:

•  <eval shell=“python” mode=“xml”>
•  import time
•  now = time.time()
•  print “<var name=ʻInfo_Nowʼ val=ʻ%sʼ/>” % now

•  </eval>

© 2009 UC Regents 59

Nodes XML Tools: <eval>
  Inside <eval> variables are not accessed with

<var>: use the environment instead.

<eval shell=“python”>
import os
print “My NTP time server is”,
 os.environ[‘Kickstart_PublicNTPHost’]
print “Got it?”
</eval>

My NTP time server is time.apple.com
Got it?

© 2009 UC Regents 60

Nodes XML Tools <file>
  Create a file on the system:

  <file name=“/etc/hi-mom” mode=“append”>
•  How are you today?

  </file>

  Used extensively throughout Rocks post sections
  Keeps track of alterations automatically via RCS.

<file name=“/etc/hi” perms=“444”>
How are you today?
I am fine.
</file>

…RCS checkin commands...
cat > /etc/hi << ‘EOF’
How are you today?
I am fine.
EOF
chmod 444 /etc/hi-mom
…RCS cleanup commands…

© 2009 UC Regents 61

Nodes XML Tools: <file>
  <file> attributes

  name
•  Required. The full path of the file to write.

  mode
•  Optional. Value is “create” or “append”. Default is create.

  owner
•  Optional. Value is “user.group”, can be numbers or names.

•  <file name=“/etc/hi” owner=“daemon.root”>
  perms

•  Optional. The permissions of the file. Can be any valid “chmod” string.
•  <file name=“/etc/hi” perms=“a+x”>

© 2009 UC Regents 62

Nodes XML Tools: <file>
  <file> attributes (continued)

  vars
•  Optional. Value is “literal” or “expanded”. In literal (default), no

variables or backticks in file contents are processed. In
expanded, they work normally.

•  <file name=“/etc/hi” vars=“expanded”>
•  The current date is `date`

•  </file>
  expr

•  Optional. Specifies a command (run on the frontend)
whose output is placed in the file.

•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>

© 2009 UC Regents 63

Fancy <file>: nested tags
<file name=“/etc/hi”>

Rocks release:
<eval>
date +”%d-%b-%Y”
echo “”
cat /etc/rocks-release
</eval>

</file>

…RCS checkin commands...
cat > /etc/hi << ‘EOF’

Rocks release:
13-May-2005

Rocks release 4.2.1 (Cydonia)

EOF
…RCS cleanup commands…

Look at Rocks Rolls
 Many examples.
 “Copy and edit” is faster than “create and

debug”

© 2009 UC Regents 64

When it just can be done in the
Post
  Some software cannot be configured in

the install environment
 E.g. Condor needs the running env
 Compiling of specialized add on devices

Two Avenues ---
 /etc/rc.d/rocksconfig.d
 /opt/rocks/SRPMS

© 2009 UC Regents 65

Rocks mod to inittab
bw::bootwait:/etc/rc.d/rc.rocksconfig before-rc
po:35:wait:/etc/rc.d/rc.rocksconfig after-rc

Files like /etc/rc.d/rocksconfig.d/pre-nn-* are
excuted before rc.d startup scripts

Files like /etc/rc.d/rocksconfig.d/post-nn-* are
executed after rc.d has completed

© 2009 UC Regents 66

Taking advantage of
rocksconfig.d
 Your roll xml file can lay down an rc/

rocksconfig.d file to particular things on
boot

 If you only want it done on first boot have
the script remove itself after execution.

© 2009 UC Regents 67

/opt/rocks/SRPMS
 In the rocksconfig.d/pre-10 script:

 Any source RPM in /opt/rocks/SRPMS will be
rebuilt and installed

 Useful for device drivers that are not part of
kernel (e.g. Myrinet, IB)

© 2009 UC Regents 68

Summary
  Look at the Rocks Rolls for examples.
 Rolls are not difficult, Understanding what

is going on under the covers helps
demystify

 Some software is more challenging than
others

 Test. Test. Test.

© 2009 UC Regents 69

