nnm(s@ Nuts and Bolts: Developing
Rolls

© 2009 UC Regents 1

SBSC

How do you reliably add and
configure (complex) software
In a cluster environment?

© 2009 UC Regents

Rocks Philosophy

¢ We've developed a “cluster compiler”

> XML framework + XML parser + kickstart
(Jumpstart for Solaris) file generator

2 Source code + preprocessor + linker

¢ Think about “programming your cluster”
= Not “administering your cluster”

© 2009 UC Regents

Purpose of Rolls

& Capture what the expert would do “by
hand” for a particular subsystem and
automate it.

¢ Enable others to extend the system to
provide completely new functionality

¢ Make the clustered system reliable and
reproducible

© 2009 UC Regents

What’s in a Roll

1. Software Packages in native OS Distribution
Format

=2 RPMs for RHEL and Derivatives
> PKG format for Solaris

2. Description of the set(s) packages to
install on each node type (Appliance)

3. Confiquration of installed software
2 What to do when a node is added/removed
2 Where is that Server?
> What specific options should be included

© 2009 UC Regents

As Delivered — OS Distributions
are both Static and Monolithic

yum
create
repo

Parallel Code / WebFarm / Grid / Computer Lab

© 2009 UC Regents 6

Bootstrapping on a Frontend (w/
0 a server in the sky)

¢ Problem: To make the frontend user-customizable at
installation time, we needed a mechanism that could

accept new packages

¢ And, we still wanted to leverage the RedHat installer

(Anaconda)
2 We don’t want to be in the installer business

¢ Solution: Our implementation makes the RedHat
installer “think” it is just installing a monolithic RedHat

distribution

© 2009 UC Regents 7

Just in time Package Repository

Parallel Code / WebFarm / Grid / Computer Lab

PVFS

Base App
Roll Roll

¢ How do you make all the packages above look like a monolithic
distribution?
> Easy! Just run “yum create repo” at release time! (And Burn a DVD)
¢ But, how do you do it when some of the above blocks are optional and/or
unknown?
> An “unknown” block is one produced after the release or by a third-party

© 2009 UC Regents 8

Rocks Workhorse: Binding a New
Distribution

® rocks create distro

o Called at install time after you have
inserted all roll RPMS have been copied

¢ Called on the installed system, whenever
an update to the distribution is required

¢ (Rolls can supply updated RPMs so that
you can build an up-to-date system)

© 2009 UC Regents

Rolls Function and Value
‘ Parallel Code / WebFarm / Grid / Computer Lab \
]

Base ‘ Myrinet | PVFS

Base App
Roll Roll

¢ Function: Rolls extend/modify stock RedHat

& Value: Third parties can extend/modify Rocks
> Rolls can be optional.
2 Doesn’t solve does Roll X interoperate with Roll Y

© 2009 UC Regents

10

Part |: Packages

© 2009 UC Regents

11

Packages

¢ Rolls require packages to be in native OS
format (RPM, Solaris pkg)

¢ The Good

2 Inspect software with native OS tools
2 Can install “by hand” using OS tools

¢ The Bad

> You have to make your software into a package
(only seems like a big hill)

> Package Mechanisms can cause odd behavior

© 2009 UC Regents 12

Our Philosophy on Packages

¢ We use packages as a transport

¢ Very little (none as a default) is done in
the package %post section

o This is what the Rocks node files are used for

& Stay away from explicitly creating “spec”
files

& Make is your friend (ours too)

© 2009 UC Regents 13

Make requirements

¢ We support building only a frontend node
(that may change)

¢ Faith

> There is large set of included make rules that
allow us to quickly package software

= You have to trust what is doing.

© 2009 UC Regents 14

Different Ways For Packaging
From Source

¢ Build software by hand, then point
> Rocks create package at the directory

¢ Build an RPM Spec file

¢ Use the Rocks-supplied Make
Infrastructure

© 2009 UC Regents 15

Creating a Roll from a template

wget --reject "index.html*" -np -r -nH --cut-dirs=2 \

© 2009 UC Regents 16

Building an RPM

& Short story

> Go to /export/site-roll/rocks/src/roll on a Rocks
Frontend

> Make a new roll from a ‘template’ roll
> Download the source tarball
> Update a description file (version.mk)

> Execute: make rpm
- Assumes tarball adheres to ‘configure, make, make install’

© 2009 UC Regents 17

Using Rocks Make Environment

¢ Rocks frontend has the tooling to build rools

¢ cd /export/site-roll/rocks/src/roll/

¢ Let’'s Make an RPM ---

¢ First, make a template for a new roll

#wget --reject "index.html*" -np -r -nH --cut-dirs=2 \

/opt/rocks/share/devel/src/roll/bin/make-roll-dir.py --
name valgrind --version 3.3.0

1s valgrind
graphs Makefile nodes src version.mk

¢ valgrind/src/valgrind has what you need to make
an rpm © 2009 UC Regents 18

src/valgrind — a working
example

cd valgrind/src/valgrind
wget

bunzip2 valgrind.*.bz2; gzip valgrind.tar

#

edit version.mk so that

TARBALL POSTFIX = tar.gz

edit Makefile and undefine ROCKSROOT

make package

1s ../../RPMS/x86 64/valgrind-3.3.0-1.x86 64.rpm
../../RPMS/x86 64/valgrind-3.3.0-1.x86 64.rpm

That’s it.... Works because valgrind is built using

“./configure; make; make install”
© 2009 UC Regents 19

Do it!

#* root@rocks-76:/export2/tmp/valgrind/src/valgrind

[rootBrocks-76 valgrind]§ 1s

Makefile wvalgrind-3.3.0.tar.gz wversion.mk
[root@Brocks-76 wvalgrind] # make rpm &> Stmp/build. log
[rootlBrocks-76 wvalgrind] #

[rootBrocks-76 valgrind] #

[root@Brocks-76 valgrind]§ 1ls

_arch rocks-version.mk Rules-recfiles.mk valgrind.spec.nk
_distribution Rules-install.mk Rules-scripts.nk version.mk
Makefile Rules-linux-centos.mk wvalgrind-3.3.0.tar.gz

03 Rules-linux.mk valgrind.buildroot

python.mk Rules.mk valgrind.spec

[root@Brocks-76 valgrind]l# 1ls ../../

BUILD/ Makefile RPMS/ SPECS/ SRPHS/

graphs/ nodes/ SQOURCES/ src/ version.mk

[rootBrocks-76 valgrind]# 1ls ../../RPM3/x86 64/valgrind-3.3.0-0.x86_64.rpm
../ ../RPM3/x86_ 64/valgrind-3.3.0-0.x86_64.rpm
[root@Brocks-76 wvalgrind] # I

© 2009 UC Regents

|

< |

20

There is “magic” here

¢ We use the native OS Package as a
transport

> rpmbuild as the “package builder”
- Needs an rpm spec file to drive it
- We build a generic spec file automatically

¢ Standard RPM file tree needs the
following directories to work properly

BUILD SOURCES SPECS

© 2009 UC Regents 21

Step 0 of Magic Create a
Standard SPEC File

¢ Creates a standard Redhat SPEC file, eqg.

Source: valgrind-3.3.0.tar.gz
Buildroot: "pwd /valgrind.buildroot
sprep
(unpack the tarball created in step 1)
Sbuild

(call make build) <€ Makefile is the src/
valgrind Makefile

$install

(call make install)

© 2009 UC Regents 22

Step 1 of Magic — Create a
Source File to go in SOURCES

1. Automatically creates a tarball of the
current directory. Calls this <name>-
<version>.tar.gz

2. Copies this file into the SOURCES
Directory

* contains this complete directory
including the “real” software tarball

© 2009 UC Regents 23

Making the SOURCES file --

[root@rocks-76 valgrind]# tree

| —— Makefile
|-— valgrind-3.3.0.tar.gz
"—— version.mk

valgrind-3.3.0.tar.gz

<rollname>/SOURCES/valgrind-3.3.0.tar.gz

© 2009 UC Regents 24

Step 3 of Magic: The BUILD
Directory

untar
Tnnnm <rollname>/BUILD/valgrind-3.3.0

valgrind-3.3.0.tar.gz

[root@rocks-76 BUILD]# tree

SPEC File Calls
This Makefile
for %build,

o)

5 | yel Bopaniniels & § 3 §0
| -— Makefile
|-- valgrind-3.3.0.tar.gz
"—— version.mk

© 2009 UC Regents 25

- You can intercept stages in the
process

¢ Before the tarball is made
¢ Add patches, Iif needed

¢ Many examples, check any of the Rocks
core rolls

© 2009 UC Regents

When RPM goes Wrong

€ Symptom — I've added an RPM an now my node
installation is completely broken, what happened?

> Observe: watch order that packages are installed on node (via
rocks-console)

> IF: packages are installed in alphabetical order then this
package is breaking Anaconda’s dependency ordering

¢ Fix Need to Turn RPM Auto Requires/Provides off

=2 In version.mk add
- RPM.EXTRAS=AutoReqgProv:No

> Rebuild rpm

© 2009 UC Regents 27

When RPM goes Wrong

¢ Symptom: RPM is stripping a (prebuilt) binary
making it useless

+ Solution: RPM hacking.
> Redefine an RPM macro

> Edit version.mk add
RPM.EXTRAS=%define _ os_install post /usr/lib/rpm/brp-compress

> Rebuild rpm

© 2009 UC Regents 28

Part Il: Defining Which
Packages go Where

© 2009 UC Regents

Graph Review

© 2009 UC Regents

30

Install Rocks

Base Graph

Basic Instructions that
define all Rocks Appliances

Rolls have packages and
graphs

© 2009 UC Regents

31

i drwigans
e e

¥
o
€ s devnqrane

o
Coe)
1w
-

-
e
-
-
RSN

-
o
re
Bl

re

-
Sowe
Sons -
Cowwre)
o
.

o
e
S
-

PRS-
[—
1o

Comwnn
i v

Base +
Rolls

)
-

L

/
f

Catonbpans D

C et

b * \ s '/ f / / ‘ f

oy e >

(o)

32

© 2009 UC Regents

Frontend = L2
Root >

¢ Traverse a graph to build up a

kickstart file (done at kickstart
time)
¢ Flexible
& Easy to share functionality -
between disparate node types é
Compute ® _——
Root _> = =

© 2009 UC Regents

33

Use Graph Structure to Dissect
Distribution

¢ Use ‘nodes’ and ‘edges’ to

build a customized kickstart @
file
kickstart file H

¢ Nodes contain portion of
> Can have a ‘main’, ‘package’
and ‘post’ section in node file

¢ Edges used to coalesce node
files into one kickstart file

© 2009 UC Regents 34

Why We Use A Graph

¢ A graph makes it easy to ‘splice’ in new nodes

¢ Each Roll contains its own nodes and splices
them into the system graph file

© 2009 UC Regents

35

XML Files

¢ We use XML files to define the nodes in
the graph
> What packages to install
> What to do at <post> installation

¢ We also use XML files to define the
graph structure

© 2009 UC Regents

36

Node and Graph Dirs in Roll

[root@rocks-76 valgrind]#
Lree

| -—— Makefile

| —— graphs

| "—-— default

| "—- valgrind.xml
| —— nodes

| "—- valgrind.xml

| | -—— Makefile

| —— usersguide

| "—- valgrind
| -—— Makefile

valgrind-3.3.0.tar.gz
| "—-— version.mk

Unimaginative Names.

© 2009 UC Regents

37

<package> Tag

¢ <package>java</package>
> Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ‘java’.
¢ <package arch=“x86_64">java</package>
> Only install this package on x86_64 architectures
¢ <package arch=“1i386,x86 64">java</package>

<package>newcastle</package> %packages

<package>stone-pale</package> newcastle

<package>valgrind</package> stone-pale
valgrind

© 2009 UC Regents

Common Splitting of Node Files

¢ <roll>-server.xml

> Things you install and configure only on
Frontends

¢ <roll>-client.xml

> Things you install and configure only on
“client” nodes (eg. Compute, NAS, VM-
containers, ...)

¢ <roll>-common.xml
> Things installed everywhere

© 2009 UC Regents 39

Graph Edges: <edge>

¢ <edge> attributes

> from
- Required. The name of a node at end of the edge
<edge from="base” to="autofs”’/>

> 1o
- Required. The name of a node at the head of an edge
o arch
- Optional. Which architecture should follow this edge. Default is
all.
2 gen
 Optional. Which generator should follow this edge. Default is

“kgen”
(IN 5.2 Edges can have conditionals based on attributes)

© 2009 UC Regents

40

Graph Edges

<edge from="security-server”’ to="“central’/>

<edge from="“client’>
<to arch="1386,x86_64">grub-client</to>

<to>autofs-client</to> .
<to>installclass-client</to> x86_64
</edge>

© 2009 UC Regents

41

Graph Ordering

Added recently to give us control over when node <post>
sections are run

<order head="database">

<tail>database-schemax</tail>
</order>

database node appears before database-schema in all kickstart
files.

Special HEAD and TAIL nodes represent “first” and “last” (post sections

that you want to run first/last)
<order head="“installclass” tail="HEAD”/> BEFORE HEAD
<order head="TAIL” tail="postshell”/> AFTER TAIL

© 2009 UC Regents

42

Graph Ordering: <order>

¢ <order> attributes
2 head

Required. The name of a node whose <post> section will appear
BEFORE in the kickstart file.

o tail

Required. The name of a node whose <post> section will appear AFTER
in the kickstart file.

<order head="“grub” tail="grub-server’/>
o arch
+ Optional. Which architecture should follow this edge. Default is all.
> gen
« Optional. Which generator should follow this edge. Default is “kgen”

© 2009 UC Regents

43

Valgrind Example: Connecting
into the graph

Vi graphs/default/valgrind.xml (and add:)
<edge from="base">

<to>valgrind</to>
</edge>

This tells us that Valgrind should be on all
appliances.

© 2009 UC Regents 44

Roll is complete

¢ Can use it as a roll to build frontends

+ A straightforward test if you have a
compute node

rocks add roll valgrind-*.iso

#rocks enable roll valgrind

(cd /export/rocks/install; rocks create distro)

rocks list host profile compute-0-0 | grep valgrind

© 2009 UC Regents

45

Where the art is: <post>

& Package Creation ranges from trivial to
not-so-trivial
¢ Defining where packages go, some on

this appliance, some on that.
Straightforward

+ But, the post section ...

© 2009 UC Regents

46

Nodes Post Section

o Scripts have minimal $PATH (/bin, /usr/bin)
¢ Error reporting is minimal
> Write to personal log file if you need debugging

¢ Not all services are up. Network is however.

> Order tag is useful to place yourself favorably relative to other
services

¢ Can have multiple <post> sections in a single node

© 2009 UC Regents

47

Nodes XML Tools: <post>

& <post> attributes
o arch
- Optional. Specifies which architectures to apply package.

o arg

+ Optional. Anaconda arguments to %post

--nochroot (rare): operate script in install environment,
not target disk.

--interpreter: specifies script language

<post arg="--nochroot --interpreter /usr/bin/python”>

© 2009 UC Regents 48

Post Example: PXE config

<post arch="x86_64,i386">
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name="/tftpboot/pxe../default”>
default ks
prompt 0
label ks

kernel vmlinuz

append ks inird=initrd.img......
<[file>
</post>

</post>

for an x86_64 machine:

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF

mkdir -p /tftpboot/pxelinux/pxelinux.cfg

...RCS...

cat > /tftpboot/pxe../default << EOF
default ks

prompt 0

EOF

..RCS...

© 2009 UC Regents 49

A Real Node file: ssh

<kickstart>
<description>
Enable SSH
</description>

<package>openssh/package>

<package>openssh-clients</package>

<package>openssh-server</package>

<package>openssh-askpass</package>
<post>

<file name="/etc/ssh/ssh config">

Host *
CheckHostIP no
ForwardX1l1l yes
ForwardAgent yes
StrictHostKeyChecking no
UsePrivilegedPort no
FallBackToRsh no
Protocol 1,2

</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

© 2009 UC Regents

50

When Things Go Wrong

¢ Test your Kickstart Graph
> Check XML syntax: xmillint

= Make a kickstart file

- Make kickstart file as a node will see it
rocks list host profile compute-0-0

© 2009 UC Regents

51

When Things Go Wrong

& Test your Kickstart Graph

o> Check XML syntax: xmllint
- # cd sweetroll/nodes
« # xmllint --noout sweetroll.xml

<?xml version="1.0" standalone="no"?> # xmllint --noout sweetroll.xml

<kickstart> sweetroll.xml:7: parser error : Opening and
<description> ending tag mismatch: description line 6 and
The sweet roll. This roll is just sweet! kickstart
<description> </kickstart>
</kickstart> A

© 2009 UC Regents 52

Nodes XML Tools: <var>

¢ Get Variables from Database

o <var name=“Kickstart PrivateAddress”/>
o2 <var name=“Node_Hostname” />

10.1.1.1
compute-0-0

> Can grab any value from the app_globals
database table

2 (in 5.2 replaced by Attributes!)

© 2009 UC Regents

53

<var> values from app_globals

«——

Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit

Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete
Delete

Delete

ID Membership

6
16
30
34
37
44
45
50
52
54
58

1

2
3
4

O O O O 0O O O O O O 0O O O O

Service T
Info

Info

Info

Info

Info

Info

Info

Info

Info

Info

Info
Kickstart
Kickstart
Kickstart

Kickstart

Component

ClusterLatlong
ClusterName
CertificateState
CertificateOrganization
CertificateLocality
CertificateCountry
ClusterURL
RocksRelease
RocksVersion
ClusterContact

Born
PrivateKickstartBasedir
PartsizeRoot
PublicAddress

PublicHostname

Value

N32.87 W117.22

Onyx

California

Rocksclusters

San Diego

us
http:/fonyx.rocksclusters.org/
Makalu

3.3.0
admin@onyx.rocksclusters.org
2005-02-23 14:30:13

install

6000

198.202.88.74

onyx.rocksclusters.org

¢ Combine “Service” and “Component”

> For example, Kickstart_PublicAddress
© 2009 UC Regents

54

Adding your own vars

¢ rocks add var service= component=
value=

¢ Easy place to put variables to reference in
your xml files.

© 2009 UC Regents 55

Nodes XML Tools: <var>

& <var> attributes
> name
* Required. Format is “Service_Component”
-+ Service and Component relate to column names in the
app_global database table.
> val

- Optional. Sets the value of this variable
<var name="Info_ClusterName” val="Seinfeld”/>

o ref

- Optional. Set this variable equal to another
<var name="“Info_Weather” ref="Info_Forecast’/>

© 2009 UC Regents

56

Nodes XML Tools: <eval>

& Do processing on the frontend when the
kickstart file is generated (by the CGl
script):

2 <eval shell=“bash”>

¢ To insert the Rocks release info in the
kickstart file:

<eval shell=“bash”> Rocks release 4.2.1 (Cydonia)
cat /etc/rocks-release

</eval>

© 2009 UC Regents

57

Nodes XML Tools: <eval>

¢ <eval> attributes
> shell
Optional. The interpreter to use. Default “sh”

2 mode

- Optional. Value is quote or xml. Default of quote specifies for kpp
to escape any XML characters in output.

- XML mode allows you to generate other tags:

<eval shell="python” mode="xml">

- import time

- now = time.time()

- print “<var name=°‘Info_Now’ val="%s’/>" % now
</eval>

© 2009 UC Regents

58

Nodes XML Tools: <eval>

¢ Inside <eval> variables are not accessed with
<var>: use the environment instead.

<eval shell=“python”>

import os

print “My NTP time server is”,
os.environ['Kickstart PublicNTPHost’]
print “Got it?”

</eval>

My NTP time server is time.apple.com
Got it?

© 2009 UC Regents

59

Nodes XML Tools <file>

¢ Create a file on the system:

> <file name=“/etc/hi-mom” mode=“append”>
e How are you today?

2 </file>

¢ Used extensively throughout Rocks post sections
> Keeps track of alterations automatically via RCS.

<file name="/etc/hi” perms=“444"> ...RCS checkin commands...
How are you today? cat > /etc/hi << ‘EOF’
| am fine. How are you today?
<[file> | am fine.
EOF
chmod 444 /etc/hi-mom
...RCS cleanup commands...

© 2009 UC Regents 60

Nodes XML Tools: <file>

¢ <file> attributes

2 name

« Required. The full path of the file to write.
> mode

« Optional. Value is “create” or “append”. Default is create.
> owner

« Optional. Value is “user.group”, can be numbers or names.
<file name="/etc/hi” owner=“daemon.root”>

> perms

« Optional. The permissions of the file. Can be any valid “chmod” string.
<file name="/etc/hi” perms="a+x">

© 2009 UC Regents

61

Nodes XML Tools: <file>

& <file> attributes (continued)

o vars

- Optional. Value is “literal” or “expanded”. In literal (default), no
variables or backticks in file contents are processed. In
expanded, they work normally.

<file name="/etc/hi” vars=“expanded’>
- The current date is "date’

<ffile>
o> expr

- Optional. Specifies a command (run on the frontend)
whose output is placed in the file.

<file name="/etc/hi” expr="/opt/rocks/dbreport hi’/>

© 2009 UC Regents 62

Fancy <file>: nested tags

<file name="“/etc/hi”’>

Rocks release:
<eval>

date +"%d-%Db-%Y"
echo

cat /etc/rocks-release
</eval>

<[file>

...RCS checkin commands...
cat > /etc/hi << ‘EOF’

Rocks release:
13-May-2005

Rocks release 4.2.1 (Cydonia)

EOF
...RCS cleanup commands...

© 2009 UC Regents

63

Look at Rocks Rolls

¢ Many examples.

¢ “Copy and edit” is faster than “create and
debug”

© 2009 UC Regents 64

When it just can be done In the
Post

¢ Some software cannot be configured in
the install environment

> E.g. Condor needs the running env
> Compiling of specialized add on devices

Two Avenues ---
& /etc/rc.d/rocksconfig.d
o /opt/rocks/SRPMS

© 2009 UC Regents 65

Rocks mod to inittab

bw: :bootwait:/etc/rc.d/rc.rocksconfig before-rc
po:35:wait:/etc/rc.d/rc.rocksconfig after-rc

Files like /etc/rc.d/rocksconfig.d/pre-nn-* are
excuted before rc.d startup scripts

Files like /etc/rc.d/rocksconfig.d/post-nn-* are
executed after rc.d has completed

© 2009 UC Regents

66

Taking advantage of
rocksconfig.d

¢ Your roll xml file can lay down an rc/
rocksconfig.d file to particular things on
boot

¢ If you only want it done on first boot have
the script remove itself after execution.

© 2009 UC Regents 67

/opt/rocks/SRPMS

¢ In the rocksconfig.d/pre-10 script:

> Any source RPM in /opt/rocks/SRPMS will be
rebuilt and installed

> Useful for device drivers that are not part of
kernel (e.g. Myrinet, IB)

© 2009 UC Regents 68

Summary

¢ Look at the Rocks Rolls for examples.

+ Rolls are not difficult, Understanding what
IS going on under the covers helps
demystify

¢ Some software is more challenging than
others

¢ Test. Test. Test.

© 2009 UC Regents 69

