
© 2009 UC Regents
 1


Nuts and Bolts: Developing 
Rolls




© 2009 UC Regents
 2


 How do you reliably add and 
configure (complex) software 
in a cluster environment? 



3


Rocks Philosophy

 Weʼve developed a “cluster compiler”


 XML framework + XML parser + kickstart 
(Jumpstart for Solaris)  file generator


 Source code + preprocessor + linker


 Think about “programming your cluster”

 Not “administering your cluster”


© 2009 UC Regents




Purpose of Rolls

 Capture what the expert would do “by 

hand” for a particular subsystem and 
automate it.


 Enable others to extend the system to 
provide completely new functionality


 Make the clustered system reliable and 
reproducible


© 2009 UC Regents
 4




5


Whatʼs in a Roll

1.  Software Packages in native OS Distribution 

Format 

  RPMs for RHEL and Derivatives

  PKG format for Solaris


2.  Description of the set(s) packages to 
install on each node type (Appliance)


3.  Configuration of installed software

  What to do when a node is added/removed

  Where is that Server? 

  What specific options should be included


© 2009 UC Regents




6


As Delivered – OS Distributions 
are both Static and Monolithic


RPMS 

yum  
create  
repo 

© 2009 UC Regents




© 2009 UC Regents
 7


Bootstrapping on a Frontend (w/
o a server in the sky)

  Problem: To make the frontend user-customizable at 

installation time, we needed a mechanism that could 
accept new packages


  And, we still wanted to leverage the RedHat installer 
(Anaconda)

  We donʼt want to be in the installer business


  Solution: Our implementation makes the RedHat 
installer “think” it is just installing a monolithic RedHat 
distribution




© 2009 UC Regents
 8


Just in time Package Repository


  How do you make all the packages above look like a monolithic 
distribution?

  Easy! Just run “yum create repo” at release time! (And Burn a DVD)


  But, how do you do it when some of the above blocks are optional and/or 
unknown?

  An “unknown” block is one produced after the release or by a third-party 




Rocks Workhorse: Binding a New 
Distribution


 rocks create distro 

 Called at install time after you have 
inserted all roll RPMS have been copied


 Called on the installed system, whenever 
an update to the distribution is required


 (Rolls can supply updated RPMs so that 
you can build an up-to-date system)


© 2009 UC Regents
 9




© 2009 UC Regents
 10


Rolls Function and Value


  Function: Rolls extend/modify stock RedHat

  Value: Third parties can extend/modify Rocks


   Rolls can be optional.  

  Doesnʼt solve does Roll X interoperate with Roll Y




Part I: Packages


© 2009 UC Regents
 11




Packages 

  Rolls require packages to be in  native OS 

format (RPM, Solaris pkg)

 The Good


  Inspect software with native OS tools

  Can install “by hand” using OS tools


 The Bad

  You have to make your software into a package  

(only seems like a big hill)

  Package Mechanisms can cause odd behavior


© 2009 UC Regents
 12




Our Philosophy on Packages

 We use packages as a transport

 Very little (none as a default) is done in 

the package %post section

 This is what the Rocks node files are used for


 Stay away from explicitly creating “spec” 
files


 Make is your friend (ours too)


© 2009 UC Regents
 13




Make requirements

 We support building only a frontend node 

(that may change)


 Faith

 There is large set of included make rules that 

allow us to quickly package software

 You have to trust what is doing. 


© 2009 UC Regents
 14




Different Ways For Packaging 
From Source

 Build software by hand, then point


 Rocks create package at the directory

 Build an RPM Spec file 

 Use the Rocks-supplied Make 

Infrastructure


© 2009 UC Regents
 15




Creating a Roll from a template

wget --reject "index.html*" -np -r –nH --cut-dirs=2 \  

http://fyp.rocksclusters.org/templates/5.1 

© 2009 UC Regents
 16




17


Building an RPM

 Short story


  Go to /export/site-roll/rocks/src/roll on a Rocks 
Frontend


  Make a new roll from a ʻtemplateʼ roll

  Download the source tarball

  Update a description file (version.mk)

  Execute: make rpm


•  Assumes tarball adheres to ʻconfigure, make, make installʼ


© 2009 UC Regents




Using Rocks Make Environment

  Rocks frontend has the tooling to build rools

  cd /export/site-roll/rocks/src/roll/

  Letʼs Make an RPM --- 

  First, make a template for a new roll

#wget --reject "index.html*" -np -r –nH --cut-dirs=2 \  

http://fyp.rocksclusters.org/templates/5.1 
# /opt/rocks/share/devel/src/roll/bin/make-roll-dir.py --

name valgrind --version 3.3.0

# ls valgrind

graphs  Makefile  nodes  src  version.mk


  valgrind/src/valgrind  has what you need to make 
an rpm
 © 2009 UC Regents
 18




src/valgrind – a working 
example

# cd valgrind/src/valgrind 
# wget 

http://valgrind.org/downloads/valgrind-3.3.0.tar.bz2 
# bunzip2 valgrind.*.bz2; gzip valgrind.tar 
# rm *.spec.in 
# edit version.mk so that  
TARBALL_POSTFIX = tar.gz 
# edit Makefile and undefine ROCKSROOT 
# make package 
# ls ../../RPMS/x86_64/valgrind-3.3.0-1.x86_64.rpm 
../../RPMS/x86_64/valgrind-3.3.0-1.x86_64.rpm 

That’s it….. Works because valgrind is built using 
“./configure; make; make install” 

© 2009 UC Regents
 19




Do it!


© 2009 UC Regents
 20




There is “magic” here

 We use the native OS Package as a 

transport

 rpmbuild as the “package builder”


•  Needs an rpm spec file to drive it

•  We build a generic spec file automatically


 Standard RPM file tree needs the 
following directories to work properly


BUILD SOURCES SPECS 


© 2009 UC Regents
 21




Step 0 of Magic Create a 
Standard SPEC File

 Creates a standard Redhat SPEC file, eg.

Source: valgrind-3.3.0.tar.gz 

Buildroot: `pwd`/valgrind.buildroot 

%prep 

    (unpack the tarball created in step 1) 

%build 
    (call make build)   Makefile is the src/

valgrind Makefile 

%install 

    (call make install) 

© 2009 UC Regents
 22




Step 1 of Magic – Create a 
Source File to go in SOURCES

1.  Automatically creates a tarball of the 

current directory. Calls this <name>-
<version>.tar.gz


2.  Copies this file into the SOURCES 
Directory


* contains this complete directory 
including the “real” software tarball


© 2009 UC Regents
 23




Making the SOURCES file --


© 2009 UC Regents
 24


[root@rocks-76 valgrind]# tree 
. 
|-- Makefile 
|-- valgrind-3.3.0.tar.gz 
`-- version.mk 

valgrind-3.3.0.tar.gz 

<rollname>/SOURCES/valgrind-3.3.0.tar.gz 



Step 3 of Magic: The BUILD 
Directory


© 2009 UC Regents
 25


valgrind-3.3.0.tar.gz 

<rollname>/BUILD/valgrind-3.3.0 
untar 

[root@rocks-76 BUILD]# tree 
. 
`-- valgrind-3.3.0 
    |-- Makefile 
    |-- valgrind-3.3.0.tar.gz 
    `-- version.mk 

SPEC File Calls 
This Makefile 
for  %build, 
%install 



You can intercept stages in the 
process


 Before the tarball is made

 Add patches, if needed

 Many examples, check any of the Rocks 

core rolls


© 2009 UC Regents
 26




When RPM goes Wrong

  Symptom – Iʼve added an RPM an now my node 

installation is completely broken, what happened?

  Observe: watch order that packages are installed on node (via 

rocks-console)

  IF: packages are installed in alphabetical order then this 

package is breaking Anacondaʼs dependency ordering

  Fix Need to Turn RPM Auto Requires/Provides off


  In version.mk  add

•  RPM.EXTRAS=AutoReqProv:No


  Rebuild rpm


© 2009 UC Regents
 27




When RPM goes Wrong

 Symptom: RPM is stripping a (prebuilt) binary 

making it useless

 Solution: RPM hacking. 


 Redefine an RPM macro

 Edit version.mk add


RPM.EXTRAS=%define __os_install_post /usr/lib/rpm/brp-compress 

 Rebuild rpm


© 2009 UC Regents
 28




Part II: Defining Which 
Packages go Where


© 2009 UC Regents
 29




Graph Review


© 2009 UC Regents
 30




© 2009 UC Regents
 31


Install Rocks 
Base Graph


Basic Instructions that 
define all Rocks Appliances 

Rolls have packages and 
graphs 



© 2009 UC Regents
 32


Base + 
 Rolls




© 2009 UC Regents
 33


Compute 
Root 

  Traverse a graph to build up a 
kickstart file (done at kickstart 
time) 


  Flexible

  Easy to share functionality 

between disparate node types


Frontend 
Root 



© 2009 UC Regents
 34


Use Graph Structure to Dissect 
Distribution


  Use ʻnodesʼ and ʻedgesʼ to 
build a customized kickstart 
file


  Nodes contain portion of 
kickstart file

  Can have a ʻmainʼ, ʻpackageʼ 

and ʻpostʼ section in node file

  Edges used to coalesce node 

files into one kickstart file 




© 2009 UC Regents
 35


Why We Use A Graph

 A graph makes it easy to ʻspliceʼ in new nodes

 Each Roll contains its own nodes and splices 

them into the system graph file




XML Files

 We use XML files to define the nodes in 

the graph 

 What packages to install

 What to do at <post> installation


 We also use XML files to define the 
graph structure


© 2009 UC Regents
 36




Node and Graph Dirs in Roll


© 2009 UC Regents
 37


[root@rocks-76 valgrind]# 
tree 
. 
|-- Makefile 
|-- graphs 
|   `-- default 
|       `-- valgrind.xml 
|-- nodes 
|   `-- valgrind.xml 
|-- src 
|   |-- Makefile 
|   |-- usersguide 
|   |   `-- valgrind 
|       |-- Makefile 
|       |-- 
valgrind-3.3.0.tar.gz 
|       `-- version.mk 

Unimaginative Names.  



© 2009 UC Regents
 38


<package> Tag

  <package>java</package> 


  Specifies an RPM package. Version is automatically determined: take 
the newest rpm on the system with the name ʻjavaʼ.


  <package arch=“x86_64”>java</package>

  Only install this package on x86_64 architectures


  <package arch=“i386,x86_64”>java</package>


<package>newcastle</package> 
<package>stone-pale</package> 
<package>valgrind</package>


%packages 
newcastle 
stone-pale 
valgrind 



Common Splitting of Node Files

 <roll>-server.xml


 Things you install and configure only on 
Frontends


 <roll>-client.xml

 Things you install and configure only on 

“client” nodes (eg. Compute, NAS, VM-
containers, …)


 <roll>-common.xml

 Things installed everywhere


© 2009 UC Regents
 39




© 2009 UC Regents
 40


Graph Edges: <edge>

  <edge> attributes


  from

•  Required. The name of a node at end of the edge


•  <edge from=“base” to=“autofs”/> 

  to


•  Required. The name of a node at the head of an edge

  arch


•  Optional. Which architecture should follow this edge. Default is 
all.


  gen

•  Optional. Which generator should follow this edge. Default is 

“kgen”


(IN 5.2 Edges can have conditionals based on attributes)




© 2009 UC Regents
 41


Graph Edges

     <edge from=“security-server” to=“central”/>


<edge from=“client”>

<to arch=“i386,x86_64”>grub-client</to>

<to>autofs-client</to>

<to>installclass-client</to>


</edge>




© 2009 UC Regents
 42


Graph Ordering

  Added recently to give us control over when node <post> 

sections are run

•  <order head="database">


•  <tail>database-schema</tail>

•  </order>


  database node appears before database-schema in all kickstart 
files.


  Special HEAD and TAIL nodes represent “first” and “last” (post sections 
that you want to run first/last)


•  <order head=“installclass” tail=“HEAD”/> 
BEFORE HEAD


•  <order head=“TAIL” tail=“postshell”/> 
AFTER TAIL




© 2009 UC Regents
 43


Graph Ordering: <order>

  <order> attributes


  head

•  Required. The name of a node whose <post> section will appear 

BEFORE in the kickstart file.

  tail


•  Required. The name of a node whose <post> section will appear AFTER 
in the kickstart file.


•  <order head=“grub” tail=“grub-server”/>

  arch


•  Optional. Which architecture should follow this edge. Default is all.

  gen


•  Optional. Which generator should follow this edge. Default is “kgen”




Valgrind Example: Connecting 
into the graph

# vi graphs/default/valgrind.xml ( and add:)

       <edge from="base">

             <to>valgrind</to>

        </edge>


This tells us that Valgrind should be on all 
appliances.


© 2009 UC Regents
 44




Roll is complete

 Can use it as a roll to build frontends 

 A straightforward test if you have a 

compute node

# rocks add roll valgrind-*.iso

#rocks enable roll valgrind

# (cd /export/rocks/install; rocks create distro)

# rocks list host profile compute-0-0 | grep valgrind

# ./nodes/valgrind.xml (valgrind)

roll-valgrind-usersguide

valgrind


© 2009 UC Regents
 45




Where the art is: <post>

 Package Creation ranges from trivial to 

not-so-trivial

 Defining where packages go, some on 

this appliance, some on that. 
Straightforward


 But, the post section …


© 2009 UC Regents
 46




© 2009 UC Regents
 47


Nodes Post Section 

  Scripts have minimal $PATH (/bin, /usr/bin)

  Error reporting is minimal 


  Write to personal log file if you need debugging


  Not all services are up. Network is however.

  Order tag is useful to place yourself favorably relative to other 

services

  Can have multiple <post> sections in a single node




© 2009 UC Regents
 48


Nodes XML Tools: <post>

  <post> attributes


  arch

•  Optional. Specifies which architectures to apply package. 


  arg

•  Optional. Anaconda arguments to %post


•  --nochroot (rare): operate script in install environment, 
not target disk.


•  --interpreter: specifies script language


•  <post arg=“--nochroot --interpreter /usr/bin/python”>




© 2009 UC Regents
 49


Post Example: PXE config

<post arch=“x86_64,i386”> 
mkdir -p /tftpboot/pxelinux/pxelinux.cfg 

<file name=“/tftpboot/pxe../default”> 
default ks 
prompt 0 
label ks 

 kernel vmlinuz   
 append ks inird=initrd.img…… 

</file> 
</post> 
… 

</post>


cat >> /root/install.log << 'EOF' 
./nodes/pxe.xml: begin post section 
EOF 
mkdir -p /tftpboot/pxelinux/pxelinux.cfg 

…RCS… 
cat > /tftpboot/pxe../default << EOF 
default ks 
prompt 0 
… 
EOF 
..RCS… 

for an x86_64 machine: 



© 2009 UC Regents
 50


A Real Node file: ssh

<kickstart> 

 <description> 
 Enable SSH 
 </description> 

 <package>openssh/package> 
 <package>openssh-clients</package> 
 <package>openssh-server</package> 
 <package>openssh-askpass</package> 

<post> 

<file name="/etc/ssh/ssh_config"> 
Host * 
        CheckHostIP             no 
        ForwardX11              yes 
        ForwardAgent            yes   
        StrictHostKeyChecking   no 
        UsePrivilegedPort       no 
        FallBackToRsh           no 
        Protocol                1,2 
</file> 

chmod o+rx /root 
mkdir /root/.ssh 
chmod o+rx /root/.ssh 

</post> 
</kickstart> 



© 2009 UC Regents
 51


When Things Go Wrong

 Test your Kickstart Graph


 Check XML syntax: xmllint

 Make a kickstart file


•  Make kickstart file as a node will see it

# rocks list host profile compute-0-0 



© 2009 UC Regents
 52


When Things Go Wrong

  Test your Kickstart Graph 


  Check XML syntax: xmllint

•  # cd sweetroll/nodes

•  # xmllint --noout sweetroll.xml


<?xml version="1.0" standalone="no"?> 

<kickstart> 
  <description> 
The sweet roll. This roll is just sweet! 
  <description> 
</kickstart>


# xmllint --noout sweetroll.xml


sweetroll.xml:7: parser error : Opening and 
ending tag mismatch: description line 6 and 
kickstart 
</kickstart> 
                ^ 



© 2009 UC Regents
 53


Nodes XML Tools: <var>

 Get Variables from Database


  <var name=“Kickstart_PrivateAddress”/>

  <var name=“Node_Hostname”/>


 Can grab any value from the app_globals 
database table


 (in 5.2 replaced by Attributes!) 


10.1.1.1 
compute-0-0 



© 2009 UC Regents
 54


<var> values from app_globals


 Combine “Service” and “Component”

  For example, Kickstart_PublicAddress




Adding your own vars

 rocks add var service= component= 

value=


 Easy place to put variables to reference in 
your xml files. 


© 2009 UC Regents
 55




© 2009 UC Regents
 56


Nodes XML Tools: <var>

  <var> attributes


  name

•  Required. Format is “Service_Component”

•  Service and Component relate to column names in the 

app_global database table.

  val


•  Optional. Sets the value of this variable

•  <var name=“Info_ClusterName” val=“Seinfeld”/>


  ref

•  Optional. Set this variable equal to another


•  <var name=“Info_Weather” ref=“Info_Forecast”/>




© 2009 UC Regents
 57


Nodes XML Tools: <eval>

 Do processing on the frontend when the 

kickstart file is generated (by the CGI 
script):

  <eval shell=“bash”>


 To insert the Rocks release info in the 
kickstart file:


Rocks release 4.2.1 (Cydonia) <eval shell=“bash”>

cat /etc/rocks-release

</eval>




© 2009 UC Regents
 58


Nodes XML Tools: <eval>

  <eval> attributes


  shell

•   Optional. The interpreter to use. Default “sh”


  mode

•  Optional. Value is quote or xml. Default of quote specifies for kpp 

to escape any XML characters in output.

•  XML mode allows you to generate other tags:


•  <eval shell=“python” mode=“xml”>

•  import time

•  now = time.time() 

•  print “<var name=ʻInfo_Nowʼ val=ʻ%sʼ/>” % now


•  </eval>




© 2009 UC Regents
 59


Nodes XML Tools: <eval>

  Inside <eval> variables are not accessed with 

<var>: use the environment instead.


<eval shell=“python”> 
import os 
print “My NTP time server is”, 
 os.environ[‘Kickstart_PublicNTPHost’] 
print “Got it?” 
</eval>


My NTP time server is time.apple.com 
Got it? 



© 2009 UC Regents
 60


Nodes XML Tools <file>

  Create a file on the system:


  <file name=“/etc/hi-mom” mode=“append”>

•  How are you today?


  </file>


  Used extensively throughout Rocks post sections

  Keeps track of alterations automatically via RCS.


<file name=“/etc/hi” perms=“444”> 
How are you today? 
I am fine. 
</file>


…RCS checkin commands... 
cat > /etc/hi << ‘EOF’ 
How are you today? 
I am fine. 
EOF 
chmod 444 /etc/hi-mom 
…RCS cleanup commands… 



© 2009 UC Regents
 61


Nodes XML Tools: <file>

  <file> attributes


  name

•  Required. The full path of the file to write.


  mode

•  Optional. Value is “create” or “append”. Default is create.


   owner

•  Optional. Value is “user.group”, can be numbers or names.


•  <file name=“/etc/hi” owner=“daemon.root”>

  perms


•  Optional. The permissions of the file. Can be any valid “chmod” string.

•  <file name=“/etc/hi” perms=“a+x”>




© 2009 UC Regents
 62


Nodes XML Tools: <file>

  <file> attributes (continued)


  vars

•  Optional. Value is “literal” or “expanded”. In literal (default), no 

variables or backticks in file contents are processed. In 
expanded, they work normally.


•  <file name=“/etc/hi” vars=“expanded”>

•  The current date is `date`


•  </file> 

  expr


•  Optional. Specifies a command (run on the frontend) 
whose output is placed in the file.


•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>




© 2009 UC Regents
 63


Fancy <file>: nested tags

<file name=“/etc/hi”> 

Rocks release: 
<eval> 
date +”%d-%b-%Y” 
echo “” 
cat /etc/rocks-release 
</eval> 

</file>


…RCS checkin commands... 
cat > /etc/hi << ‘EOF’ 

Rocks release: 
13-May-2005 

Rocks release 4.2.1 (Cydonia) 

EOF 
…RCS cleanup commands… 



Look at Rocks Rolls 


 Many examples. 

 “Copy and edit” is faster than “create and 

debug”


© 2009 UC Regents
 64




When it just can be done in the 
Post

  Some software cannot be configured in 

the install environment

 E.g. Condor needs the running env

 Compiling of specialized add on devices


Two Avenues 
--- 

 /etc/rc.d/rocksconfig.d

 /opt/rocks/SRPMS


© 2009 UC Regents
 65




Rocks mod to inittab

bw::bootwait:/etc/rc.d/rc.rocksconfig before-rc 
po:35:wait:/etc/rc.d/rc.rocksconfig after-rc 

Files like /etc/rc.d/rocksconfig.d/pre-nn-* are 
excuted before rc.d startup scripts 

Files like /etc/rc.d/rocksconfig.d/post-nn-* are 
executed after rc.d has completed 

© 2009 UC Regents
 66




Taking advantage of 
rocksconfig.d

 Your roll xml file can lay down an rc/

rocksconfig.d file to particular things on 
boot


 If you only want it done on first boot have 
the script remove itself after execution.


© 2009 UC Regents
 67




/opt/rocks/SRPMS

 In the rocksconfig.d/pre-10 script:


 Any source RPM in /opt/rocks/SRPMS will be 
rebuilt and installed


 Useful for device drivers that are not part of 
kernel (e.g. Myrinet, IB)


© 2009 UC Regents
 68




Summary

  Look at the Rocks Rolls for examples.

 Rolls are not difficult, Understanding what 

is going on under the covers helps 
demystify


 Some software is more challenging than 
others


 Test. Test. Test.


© 2009 UC Regents
 69



