Inside the torque-roll

Roy Dragseth
Team Leader, HPC
The Computer Center
University of Tromsø
roy.dragseth@uit.no
University of Tromsø

Northernmost university in the world.
Staff: 2000
Students: 6000
Rocks installation

- stallo.uit.no
- 704 nodes
- 5632 cores
- 12TB RAM
- 60 Tflop/s
- Rocks 4.3
- PBS roll 4.3.0
Topics

• The torque roll
• Scheduling tips and tricks
• Future directions
• Q/A
Topics

• The torque roll
• Scheduling tips and tricks
• Future directions
• Q/A
Software

• Torque, http://www.clusterresources.com/products/torque
• mpiexec, http://www.osc.edu/~pw/mpiexec/
• pbstools, http://www.osc.edu/~troy/pbs/
• pbspython, ftp://ftp.sara.nl/pub/outgoing/
Where to get it

- Homepage (sadly outdated)
 http://uit.no/itavd/HPC-Rocks-PBS-Roll/
- Download
 ftp://ftp.uit.no/pub/linux/rocks/torque-roll
- Source code
 http://devsrc.cc.uit.no/hg/torque/
DIY

• Clone the repository

 hg clone http://devsrc.cc.uit.no/hg/torque/

• Building is a three step process

 cd torque/src/torque
 make rpm
 cd ../..
 rpm -i RPMS/x86_64/torque*.rpm
 make roll

 The torque rpm build depends on readline-devel and tclx-devel rpms being installed.
Roll graph structure

• Really simple
• No choices at install time
• Default setup should give you a simple FIFO queuing system that just works.
Installed daemons etc

• Frontend
 – maui
 – pbs_server
 – pbs_mom (not running)
 – mpiexec (mostly for the man-page)

• Compute
 – pbs_mom
 – mpiexec
Modifying the setup

• Highly advanced batch scheduling features support by maui.
• If you want to hack the torque node list you need to turn off automatic updates.

See

/etc/torque-roll.conf
Topics

• The torque roll
• Scheduling tips and tricks
• Future directions
• Q/A
Scheduling features

• Maui provides a rich set of scheduling features
• Maui can schedule on
 – cpus, walltime, memory, disk size, network topology and more...
• We will focus on node distribution and how to make your users behave.
Needed job info

• For scheduling to be useful one needs info about the jobs
 – At least number of cpus and walltime
 – Memory requirements also useful

#PBS -lwalltime=HH:MM:SS
#PBS -lnodes=10:ppn=8
#PBS -lpmem=1gb
Memory handling on linux

• torque/maui supports two memory specification types, (p)mem and (p)vmem on linux.
• pmem is not enforced, used only as information to the scheduler.
• pvmem is enforced, terminating procs that cross the limit.
 – limiting vmem size by setting ulimit -v on the processes
Torque hacking

• Torque is installed in /opt/torque
• qmgr is the torque mgt. command
• Friendly advice: backup your working config

 # qmgr -c "print server" > /tmp/pbsconfig.txt
Torque hacking

• Roll back to escape from a messed up system:

 # qterm; pbs_server -t create
 # qmgr < /tmp/pbsconfig.txt

• This will bring you back to where you started.

Remark: this will wipe the whole queue setup and all currently queued and running jobs will be lost!
Maui hacking

• Most things can be achieved by modifying

 /opt/maui/maui.cfg

• Maui needs restart after changing the config file

 service maui restart
Advice

• If you can achieve the same thing by changing either torque or maui, use maui.
• Restarting maui is rather lightweight operation, and seldom causes problems for live systems.
• Restarting pbs_server can make the system oscillatory for a few minutes.
 – pbs_server needs to contact all pbs_moms to get back in state.
Prioritizing short jobs

• Often it is useful to give shorter jobs higher priority.

• Use the XFACTOR feature in maui rather than torque queues with different priorities.

 XFACTORWEIGHT 1000
Prioritizing short jobs

• XFACTOR is defined as
 XFACTOR=(walltime+queuetime)/walltime

• XFACTOR will increase faster for shorter walltimes thus giving higher priorities for short jobs.

• Depends on users giving reasonable walltime limits.
Prioritizing large jobs (maui)

- In a cluster with a diverse mix of jobs it is useful to prioritize the large jobs and make the smaller ones fill in the gaps.

 CPUWEIGHT 1000
 MEMWEIGHT 100

- This should be combined with fairshare to avoid starving users falling outside this prioritization.
Fairshare (maui)

• Also known as
 “Keeping all users equally unhappy”
• Can be done on several levels
 – users, groups.....
• Set a threshold
 USERCFG[DEFAULT] FSTARGET=10
 FSWEIGHT 100
• Users having used more than 10% will get reduced priority and vice versa.
Adjusting your policy

• You can play with the weights to fine-tune your scheduling policies
 XFACTORWEIGHT 100
 FSWEIGHT 1000
 RESWEIGHT 10
 CPUWEIGHT 1000
 MEMWEIGHT 100

• Analyze the prioritization with
 diagnose -p
Job node distribution

• Default is MINRESOURCE
 – Run on the nodes which gives the least unused resources.

• Spread or pack?
 NODEALLOCATIONPOLICY PRIORITY
 – Select the most busy nodes
 NODECFG[DEFAULT] PRIORITYF=JOBCOUNT
 – Select the least busy nodes
 NODECFG[DEFAULT] PRIORITYF=-1.0*JOBCOUNT
Node access policy

- Default access policy is SHARED
- Can choose to limit this to SINGLEJOB or SINGLEUSER, for instance
 NODEACCESSPOLICY SINGLEUSER
- Single user access prevents users from stepping on each other’s toes while allowing good utilization for serial jobs.
Throttling policies

• Sometimes one needs to limit the user from taking over the system...
 – MAXPROC, MAXPE, MAXPS, MAXJOB, MAXIJOB

• All can be set for all or individual users and groups
 – USERCFG[DEFAULT], USERCFG[UserA] etc.
Debugging and analyzing

• Lot of tools:
 – pbsnodes -- node status
 – qstat -f -- all details of a job
 – diagnose -n -- node status from maui
 – diagnose -p -- job priority calculation
 – showres -n -- job reservation per node
 – showstart -- obvious
 – checkjob/checknode – also pretty obvious..
Example: express queue

- **Goal**: Supporting development and job script testing, but prevent misuse
- **Basic philosophy**:
 - Create a separate queue
 - Give it the highest priority
 - Throttle it so it is barely usable
Example: express queue

Create the queue with qmgr

create queue express
set queue express queue_type = Execution
set queue express resources_max.walltime = 08:00:00
set queue express resources_default.nodes = 1:ppn=8
set queue express resources_default.walltime = 08:00:00
set queue express enabled = True
set queue express started = True
Example: express queue

Increase the priority and limit the usage

CLASSWEIGHT 1000
CLASSCFG[express] PRIORITY=1000 MAXIJOB=1
MAXJOBPERUSER=1 QLIST=express QDEF=express
QOSCFG[express] FLAGS=IGNUSER

This will allow users to test job scripts and run interactive jobs with good turnaround
Summary

• Limit the number of queues
• You need good info about walltime
Topics

• The torque roll
• Scheduling tips and tricks
• Future directions
• Q/A
Future

• Fix integration with openmpi
 – Many versions to support, will probably focus on the one supplied with Rocks.

• BLCR support
 – Would be really nice to have job migrating between nodes, job preemption etc.
 – Still a long way to go...

• New ganglia frontend.
Future

• Make it SGE friendly?
• Integrate with the rocks command line
• Actually write some documentation...
Topics

• The torque roll
• Scheduling tips and tricks
• Future directions
• Q/A
Getting help

• Rocks mailing list.
 (mention torque, maui or pbs in the subject)
• The torque and maui sites are good starting points for info.
• Torque and maui also have friendly mailing lists.
• The torque-roll is known to CR.
• You can buy moab from ClusterCorp