User Session 3

Rocks-A-Palooza III
Building on Top of Rocks

Inheritance and Rolls
How Rocks in built

- **Rocks-dist**
 - Merges all RPMs
 - Red Hat
 - Rocks
 - Resolves versions
 - Creates Rocks

- **Rocks distribution**
 - Looks just like Red Hat
 - Cluster optimized Red Hat
How You Create Your Own Rocks

- Rocks-dist
 - Merges all RPMs
 - Rocks
 - Yours
 - Resolves versions
 - Creates Rocks++

- Your distribution
 - Looks just like Rocks
 - Application optimized Rocks
Extension Through Inheritance

- UCSD/SDSC Rocks
 - BIRN
 - GAMESS Portal
 - GEON
 - GriPhyN
 - Camera
 - Optiputer

- Commercial
 - Other stacks “based” on Rocks

- Can also override existing functionality
 - Rocks without NFS?
 - Rocks for the desktop?
Need Better Flexibility in Stack

- **Issues**
 - Static Stack
 - Cannot redefine
 - Cannot extend
 - Monolithic Stack
 - Cannot “opt out”
 - All or nothing solution
 - E.g. PBS not SGE

- **What we need**
 - Dynamic Stack
 - Component Based Stack
 - User / Developer Extensible
Rolls Break Apart Rocks

© 2007 UC Regents
Rocks is What You Make it

Motivation
- “I’m concerned Rocks is becoming everything for everyone” - rocks mailing list
- “Building a cluster should be like ordering a car. I want the sports package, but not the leather seats, …” - z4 owning rocks developer
- We need to let go of Rocks but hold onto the core
 - Recruit more external open-source developers
 - Only trust ourselves with fundamental architecture and implementation
- We wanted to move the SGE but need to still support PBS

Rolls
- Optional configuration and software
- Just another CD for installed (think application pack)
- SGE and PBS are different Rolls
 - User chooses scheduler
 - PBS Roll supported by Norway
 - SGE Roll supported by Singapore (and us)
- Rolls give us more flexibility and less work

Rocks is done
- The core is basically stable and needs continued support
- Rolls allow us to develop new ideas
- Application Domain specific
Rolls are sub-graphs

- A graph makes it easy to ‘splice’ in new nodes
- Each Roll contains its own nodes and splices them into the system graph file
Starting from the empty set

\{
\}
{ base }
{ base, hpc }
{ base, hpc, kernel }
\{ \text{base, hpc, kernel, sge} \}
Simplified Example
{base, hpc, sge, bio}
Two different Clusters

MPI Cluster::{base, hpc, kernel, sge}

Protein Databank::{base, hpc, kernel, pdb}
key point

Minor differences in the graph add up to large functional differences
Where are the Scaling Limits?

- **Time for Kickstart Generation**
 - 3 - 4 s / host
 - $O(n)$

- **Time to Download Packages**
 - Rocks uses HTTP to transport Packages
 - Linux easily serves HTTP files at
 - 100MB/sec @ 1Gbit
 - 12 MB/Sec@100Mbit

- **Time**
 - $\text{Time} = \text{<#nodes>} \times \text{<total MB packages>} / \text{HTTP Speed}$
 - Total Packages ~ 350MB

<table>
<thead>
<tr>
<th></th>
<th>128 Nodes</th>
<th>1024 Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mbit</td>
<td>3700s (1hr)</td>
<td>9 hours</td>
</tr>
<tr>
<td>1 Gbit</td>
<td>460s (8 min)</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
Avalanche Installer

- Install nodes from a peer-to-peer package cache
- Takes advantage of switched networks to unload the frontend
- Kickstart generation is split between frontend and nodes
- Backoff mechanisms keep the frontend load under control
- Zero administration
Pre-Avalanche
Space-Time and HTTP

Node Appliances

- DHCP
- Kickstart

Frontends/Servers

- IP + Kickstart URL
- kpp
- SQL DB
- kgen

Request Package

Serve Packages

Install Package

Post Config

Reboot

- HTTP:
 - Kickstart URL (Generator) can be anywhere
 - Package Server can be (a different) anywhere
Installing node receives XML of graph traversal
Installing node converts XML into a kickstart file
Any node can server packages over BT
A Glimpse at Performance

- 45 Nodes – 100 Mbit
 - Old and Slow!
 - 350MB (Slim Compute Node)

- Pre-avalanche:
 - Estimate: 1600s
 - Actual: 1700s

- Avalanche:
 - Estimate: 900s
 - Actual: 1000s

- Avalanche is significantly quicker – and reduces load on the frontend
OptIPortal

viz roll
{ base, hpc, kernel, viz }
Early Work: NCSA

- **LCD Cluster**
 - Custom framing
 - One PC / tile
 - Portable (luggable)
 - SC 2001 Demo

- **NCSA Software**
 - Pixel Blaster
 - Display Wall In-A-Box
 - OSCAR based
 - Never fully released
NCMIR

- Using Rocks
- Hand configured a visualization cluster
- “Administered the machine to the point of instability”
 - David Lee
- Automation is needed
COTS Vis: GeoWall

- **LCD Clusters**
 - One PC / tile
 - Gigabit Ethernet
 - Optional Stereo Glasses
 - Portable
 - Commercial Frame (Reason)

- **Applications**
 - Large remote sensing
 - Volume Rendering
 - Seismic Interpretation
 - Brain mapping (NCMIR)

- **Electronic Visualization Lab**
 - Jason Leigh (UIC)
OptIPortal (SAGE)
One Node per Display
OptIPortal
Nodes Behind the Wall
Genomic Map (cgview)
Building a Rocks Clusters

Young Frankenstein - Gene Wilder, Peter Boyle

© 2007 UC Regents

33
Frontend

frontend
For a new installation.

frontend rescue
To boot into rescue mode.

Client
do nothing (default)
Welcome to Rocks

Selected Rolls

No rolls have been selected.

If you have CD/DVD-based rolls (that is, ISO images that have been burned onto CDs or a DVD), then click the CD/DVD-based Roll button. The media tray will eject. Then, place your first roll disk in the tray and click Continue. Repeat this process for each roll disk.

If you are performing a network-based installation (also known as a central installation), then input the name of your roll server into the Hostname of Roll Server field and then click the Download button. This will query the roll server and all the rolls that the roll server has available will be displayed. Click the selected checkbox for each roll you will to install from the roll server.

When you have completed your roll selections, click the Next button to proceed to cluster input screens (e.g., IP address selection, root password setup, etc.).
No rolls have been selected.

If you have CD/DVD-based rolls (that is, ISO images that have been burned onto CDs or a DVD), then click the CD/DVD-based Roll button. The media tray will eject. Then, place your first roll disk in the tray and click Continue. Repeat this process for each roll disk.

If you are performing a network-based installation (also known as a central installation), then input the name of your roll server into the Hostname of Roll Server field and then click the Download button. This will query the roll server and all the roles that the roll server has available will be displayed. Click the selected checkbox for each role you wish to install from the roll server.

When you have completed your roll selections, click the Next button to proceed to cluster input screens (e.g., IP address selection, root password setup, etc.).
Welcome to Rocks

Selected Rolls

No rolls have been selected.

If you have CD/DVD-based rolls (that is, ISO images that have been burned onto CDs or a DVD), then click the CD/DVD-based Roll button. The media tray will eject. Then, place your first roll disk in the tray and click Continue. Repeat this process for each roll disk.

If you are performing a network-based installation (also known as a central installation), then input the name of your roll server into the Hostname of Roll Server field and then click the Download button. This will query the roll server and all the rolls that the roll server has available will be displayed. Click the selected checkbox for each roll you will to install from the roll server.

When you have completed your roll selections, click the Next button to proceed to cluster input screen (e.g., IP address selection, root password setup, etc.).
Welcome to Rocks

Selected Rolls

<table>
<thead>
<tr>
<th>Roll Name</th>
<th>Version</th>
<th>Arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
</tbody>
</table>

Select Your Rolls

Local Rolls

CD/DVD-based Roll

Network-based Rolls

Hostname of Roll Server: central.rocksclusters.org

Download

Next
Welcome to Rocks

Selected Rolls

<table>
<thead>
<tr>
<th>Roll Name</th>
<th>Version</th>
<th>Arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
<tr>
<td>hpc</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
<tr>
<td>kernel</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
<tr>
<td>os</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
<tr>
<td>web-server</td>
<td>4.2</td>
<td>x86_64</td>
</tr>
</tbody>
</table>

Select Your Rolls

Local Rolls

CD/DVD-based Roll

Network-based Rolls

Hostname of Roll Server: central.rockscusters.org

Download

Next
Welcome to Rocks

Help

IP address:
Enter the IP address for eth1. This is the interface that connects the frontend to the outside network.

Netmask:
Enter the netmask for eth1.

Ethernet Configuration for eth1

<table>
<thead>
<tr>
<th>IP address</th>
<th>172.19.119.230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

Back Next
Welcome to Rocks

Help

Gateway:
The IP address of your public gateway.

DNS Servers:
Supply a comma separated list of your DNS servers.

Miscellaneous Network Settings

Gateway: 172.19.119.1
DNS Servers: 132.239.1.52

Back Next
Manual Partition
not for new users

www.rocksclusters.org

Disk Setup
Choose where you would like Rocks to be installed.

If you do not know how to partition your system or if you need help with using the manual partitioning tools, refer to the product documentation.

If you used automatic partitioning, you can either accept the current partition settings (click Next), or modify the setup using the manual partitioning tool.

If you are manually partitioning your system, you can see your current hard drive(s) and partitions displayed below. Use the partitioning tool to add, edit, ...
Installing Packages

We have gathered all the information needed to install Rocks on the system. It may take a while to install everything, depending on how many packages need to be installed.
Installing Packages

We have gathered all the information needed to install Rocks on the system. It may take a while to install everything, depending on how many packages need to be installed.

Welcome to CentOS 4!

Thank you for installing CentOS 4.

CentOS is an Enterprise-class Linux Distribution derived from sources freely provided to the public by a prominent North American Enterprise Linux vendor. CentOS conforms fully with the upstream vendors redistribution policy and aims to be 100% binary compatible. (CentOS mainly changes packages to remove upstream vendor branding and artwork.)

More Info: http://www.centos.org/

Installing redhat-logos-1.1.26-1.centos4.1.noarch (8 MB)
Red Hat-related icons and pictures.
key point

First time cluster builders should stay as close as possible to the defaults
Interactive Screen

- Fill out the screens we just talked about
- Use the provided network information
- Choose your own password
- All information goes into the cluster database
Add Compute Node with Insert-ethers

- Collect the Ethernet MAC address of cluster nodes
- Only done once, during integration
- Populates cluster database
Adding Compute Nodes

Insert Ethernet Addresses -- version 4.2
Opened kickstart access to 10.0.0.0/255.0.0.0 network

Choose Appliance Type

Select An Appliance Type:

- Compute
- Ethernet Switches
- NAS Appliance
- Power Units
- Remote Management
- Tile

OK
Insert Ethernet Addresses -- version 4.2
Opened kickstart access to 10.0.0.0/255.0.0.0 network

Inserted Appliances

Press <F10> to quit, press <F11> to force quit
Insert Ethernet Addresses -- version 4.2
Opened kickstart access to 10.0.0.0/255.0.0.0 network

Inserted Appliances
Discovered New Appliance

Discovered a new appliance with MAC (00:13:72:ba:c8:df)

Press <F10> to quit, press <F11> to force quit
Insert Ethernet Addresses -- version 4.2
Opened kickstart access to 10.0.0.0/255.0.0.0 network

Inserted Appliances

00:13:72:ba:c8:df compute-0-0 () #

Press <F10> to quit, press <F11> to force quit
Insert Ethernet Addresses -- version 4.2
Opened kickstart access to 10.0.0.0/255.0.0.0 network

Inserted Appliances

00:13:72:ba:c8:df compute-0-0 (*) #

Press <F10> to quit, press <F11> to force quit
[adult swim]
rockstar.rocksclusters.org

- **ssh access** *(no telnet)*
- **Account**
 - Username: rap-01, rap-02, ...
 - Password: amdrocks
- **User level access only**
Simple MPI Program

```c
#include <stdio.h>
#include "mpi.h"

int main(int argc, char *argv[]) {
    MPI_Comm_world, &numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);
    MPI_Init(&argc, &argv);
    MPI_Finalize();
```
Simple MPI/SGE Submit Script

```
#!/bin/bash
#
#$ -cwd
#$ -j y
#$ -S /bin/bash

MPI_DIR=/opt/mpich/gnu

$MPI_DIR/bin/mpirun -np $NSLOTS -machinefile $TMPDIR/machines hello
```
Compile / Run

◆ Compile

 /opt/mpich/gnu/bin/mpicc -o hello hello.c

◆ Run

 qsub -pe mpich 2 hello.sh

◆ Monitor

 qstat
Example Run

```
[mjk@rocks-52 mjk]$ /opt/mpich/gnu/bin/mpicc -o hello hello.c
[mjk@rocks-52 mjk]$ qsub -pe mpich 2 hello.sh
your job 4773 ("hello.sh") has been submitted
[mjk@rocks-52 mjk]$ qstat
job-ID prior name user   state  submit/start at   queue   master  ja-task-ID
-----------------------------------------------------------------------
   4773   0 hello.sh mjk   qw 05/17/2005 15:23:30
[mjk@rocks-52 mjk]$ qstat
job-ID prior name user   state  submit/start at   queue   master  ja-task-ID
-----------------------------------------------------------------------
   4773   0 hello.sh mjk   r   05/17/2005 15:23:41 compute-0- SLAVE
   4773   0 hello.sh mjk   r   05/17/2005 15:23:41 compute-0- MASTER
   4773   0 hello.sh mjk   r   05/17/2005 15:23:41 compute-0- SLAVE
[mjk@rocks-52 mjk]$ ls -l hello.sh.*
-rw-r--r--  1 mjk  mjk          62 May 17 15:23 hello.sh.o4773
-rw-r--r--  1 mjk  mjk         106 May 17 15:23 hello.sh.po4773
[mjk@rocks-52 mjk]$ cat hello.sh.o4773
Process 0 on rocks-62.sdsc.edu
Process 1 on rocks-62.sdsc.edu
[mjk@rocks-52 mjk]$ qstat
[mjk@rocks-52 mjk]$ hostname
rocks-52.sdsc.edu
[mjk@rocks-52 mjk]$`
```
HPL.dat

HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout, 7=stderr, file)
1 # of problems sizes (N)
1000 Ns
1 # of NBs
64 NBs
1 # of process grids (P x Q)
1 Ps
2 Qs
16.0 threshold
3 # of panel fact
0 1 2 PFACTs (0=left, 1=Cout, 2=Right)
1 # of recursive stopping criterium
8 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
7 RFACGTs (0=left, 1=Cout, 2=Right)
1 # of broadcast
1 BCASTs (0=1rg, 1=1rM, 2=2rg, 3=2rM, 4=Lng, 5=LrM)
1 # of lookahead depth
1 DEPTHs (>= 0)
2 SWAP (0=bin-exch, 1=long, 2=mix)
80 swapping threshold
0 L1 in (0=transposed, 1=no-transposed) form
0 U in (0=transposed, 1=no-transposed) form
1 Equilibration (0=no, 1=yes)
8 memory alignment in double (>= 0)
Example HPL Run

```bash
[mjk@rocks-52 mjk]$ cp /var/www/html/rocks-documentation/3.3.0/examples/HPL.dat .
[mjk@rocks-52 mjk]$ qsub -pe mppich 2 hpl.sh
your job 4776 ("hpl.sh") has been submitted
[mjk@rocks-52 mjk]$ qstat

+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------
| job-ID | prior name | user | state | submit/start at | queue | master | ja-task-ID |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------
|       4776     | 0 hpl.sh      | mjk | qw    | 05/17/2005 18:11:43 |      |        |        |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------
[mjk@rocks-52 mjk]$ qstat
[mjk@rocks-52 mjk]$ cat hpl.sh
```

HPLinpack 1.0 -- High-Performance Linpack benchmark -- September 27, 2000
Written by A. Petitet and R. Clint Whaley, Innovative Computing Labs., UTK

An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
GFlops : Rate of execution for solving the linear system.

The following parameter values will be used:

N : 1000
NB : 64
P : 1
Q : 2
PFACT : Left Crout Right
NBMIN : 8
NDIV : 2
Linpack Scaling

Then edit ‘HPL.dat’ and change:
- 1 Ps
 ➤ To:
 - 2 Ps
 ➤ The number of processors Linpack uses is $P \times Q$

To make Linpack use more memory (and increase performance), edit ‘HPL.dat’ and change:
- 1000 Ns
 ➤ To:
 - 4000 Ns
 ➤ Linpack operates on an $N \times N$ matrix

Submit the (larger) job:
- `qsub qsub-test.sh`
Others Tasks

- Globus
 - See grid roll usersguide
 - Setup user keys
 - `globus-job-run localhost /bin/hostname`
 - `globus-job-run localhost/jobmanager-sge`
- Adding RPMs to nodes
 - See usersguide for graph instructions
- Rebuild with Central/CDROM