
© 2007 UC Regents 1

User Session 1
Introduction to Clusters

Rocks-A-Palooza III

Starting at 10:00am

© 2007 UC Regents 2

© 2007 UC Regents 3

Outline of the Day
 Session 1

 Introduction to Clusters
 High level definition of Rocks
 Some other projects for perspective
 “Tuner Tale”

 Session 2
 More complete definition of Rocks
 Software Components
 Description based installation

© 2007 UC Regents 4

 Session 3
 Definition of Rolls
 Cluster build demonstration

 Session 4
 Open Lab
 Remote access to cluster at UCSD

© 2007 UC Regents 5

User Track: Goals
 Training for users and technical

managers in Rocks
 Build on the Rocks community and

introduce people face-to-face
 Entry into the Rocks-A-Palooza Tracks

 Year 1: User Track
 Year 2: Developer Track
 Year 3: Working Groups

© 2007 UC Regents 6

Ground Rules
 We are going to go slow

 Starting with “what is a cluster”
 Ending with building a Rocks cluster

 This is for new users
 Slides are recycled from RAP I, RAP II
 If you are bored go to the developer track

 Interrupt me at ANY time
 This is for you and should be interactive
 I’d also rather interact than present slides

© 2007 UC Regents 7

Before We Start
 Who are you?

 Name
 Title (optional)
 Institution

 Why are you where?
 Are you running Rocks now?

© 2007 UC Regents 8

Let’s Start

© 2007 UC Regents 9

Sampling of HPC Hardware

© 2007 UC Regents 10

Some Significant Software

© 2007 UC Regents 11

Relationships

© 2007 UC Regents 12

NOW
Network of Workstations

 Pioneered the vision for clusters of commodity processors.
 David Culler (UC Berkeley) started early 90’s
 SunOS on SPARC Microprocessor
 High Performance, Low Latency Interconnect

• First generation of Myrinet
• Active Messages

 Glunix (Global Unix) execution environment
 Brought key issues to the forefront of commodity-based computing

 Global OS
 Parallel file systems
 Fault tolerance
 High-performance messaging
 System Management

© 2007 UC Regents 13

Beowulf
www.beowulf.org

 Definition
 Collection of commodity computers (PCs)
 Using a commodity network (Ethernet)
 Running open-source operating system (Linux)

 Interconnect
 Gigabit Ethernet (commodity)

• High Latency
• Cheap

 Myrinet, Infiniband, … (non-commodity)
• Low Latency
• OS-bypass
• Expensive

 Programming model is Message Passing
 NOW pioneered the vision for clusters of commodity processors.
 Beowulf popularized the notion and made it very affordable
 Come to mean any Linux cluster

© 2007 UC Regents 14

Outcomes of NOW / Beowulf
 Clusters of PCs Popularized
 Allowed more people to work on parallel computing
 Almost all software components published as open-

source
 Brought key ingredients of MPPs into the commodity

space
 Message passing environments
 Batch processing systems

 Extremely hard to build and run

© 2007 UC Regents 15

High Performance Computing
Cluster

Frontend Node Public Ethernet

Private
Ethernet Network

Application
Network (Optional)

Node Node Node Node Node

Node Node Node Node Node

Power Distribution
 (Net addressable units as option)

© 2007 UC Regents 16

Minimum Components

i386 (Pentium/Athlon)
x86_64 (Opteron/EM64T)
ia64 (Itanium) server

Local Hard
Drive

Power

Ethernet

© 2007 UC Regents 17

Optional Components
 High-performance network

 Myrinet
 Infiniband

 Network-addressable power
distribution unit

 Keyboard/video/mouse network
not required
 Non-commodity
 How do you manage your

management network?

© 2007 UC Regents 18

Growth of Clusters

© 2007 UC Regents 19

Growth of Linux

© 2007 UC Regents 20

Growth of Commodity CPUs
x86_64, EM64T, IA-64, IA-32

© 2007 UC Regents 21

Growth of Commodity Networks
Infiniband, Gigabit, Myrinet

© 2007 UC Regents 22

Top500: Linpack Performance

© 2007 UC Regents 23

Observations
 Clusters Dominate

 Slowly growing since late 90’s
 Now at 72% of deployed Top500 machines

 Growth of Aggregate Top500
performance remains constant
 Even though clusters can be less efficient

than other architectures
 If cost is low enough efficiency is not the

most important metric

© 2007 UC Regents 24

key point

If you are fast you can be stupid

© 2007 UC Regents 25

Other Clusters
 Highly Available (HA)

 Generally small, less than
8 nodes

 Redundant components
 Multiple communication

paths
 This is not Rocks

 Visualization Clusters
 Each node drives a display
 OpenGL machines
 This is not core Rocks
 But, there is a Viz Roll

© 2007 UC Regents 26

The Dark Side of Clusters
 Clusters are phenomenal price/performance computational engines

…
 Can be hard to manage without experience
 High-performance I/O is still unsolved
 Finding out where something has failed increases at least linearly as

cluster size increases
 Not cost-effective if every cluster “burns” a person just for care and

feeding
 Programming environment could be vastly improved
 Technology is changing very rapidly. Scaling up is becoming

commonplace (128-256 nodes)

© 2007 UC Regents 27

The Top 2 Most Critical
Problems
 The largest problem in clusters is software skew

 When software configuration on some nodes is different than
on others

 Small differences (minor version numbers on libraries) can
cripple a parallel program

 The second most important problem is adequate job
control of the parallel process
 Signal propagation
 Cleanup

© 2007 UC Regents 28

 Technology transfer of commodity clustering to application scientists
(non-technical people)

 “make clusters easy”
 Scientists can build their own supercomputers and migrate up to national

centers, or international grids, as needed
 Supports more than just MPI machines

 Rocks is a cluster on set of CDs (or a DVD)
 Red Enterprise Hat Linux (open source, de facto standard, and free)
 Clustering software (PBS, SGE, Ganglia, GT4, …)
 Highly programmatic software configuration management

 Core software technology for many UCSD projects
 BIRN, CTBP, EOL, GEON, NBCR, OptIPuter, CAMERA, …

 First Software release Nov, 2000
 Began as an MPI cluster solution
 Now builds grid resources
 Moving towards virtualization (XEN) and other OSes (Solaris)

 Supports x86, Opteron/EM64T, and Itanium

Rocks (open source clustering distribution)
www.rocksclusters.org

© 2007 UC Regents 29

Philosophy
 Caring and feeding for a system

is not fun
 System Administrators cost more

than clusters
 1 TFLOP cluster is less than

$100,000 (US)

 Close to actual cost of a fulltime
administrator

 The system administrator is the
weakest link in the cluster
 Bad ones like to tinker (make

small changes)
 Good ones still make mistakes

© 2007 UC Regents 30

Philosophy
continued

 All nodes are 100% automatically
configured
 Zero “hand” configuration
 This includes site-specific

configuration
 Run on heterogeneous standard

high volume components
 Use components that offer the

best price/performance
 Software installation and

configuration must support
different hardware

 Homogeneous clusters do not
exist

 Disk imaging requires
homogeneous cluster

© 2007 UC Regents 31

Philosophy
continued

 Optimize for installation
 Get the system up quickly
 In a consistent state
 Build supercomputers in hours not

months
 Manage through re-installation

 Can re-install 128 nodes in under 20
minutes

 No support for on-the-fly system
patching

 Do not spend time trying to issue
system consistency
 Just re-install
 Can be batch driven

 Uptime in HPC is a myth
 Supercomputing sites have monthly

downtime
 HPC is not HA

© 2007 UC Regents 32

 Q: Contributions to user docs
 A: https://wiki.rocksclusters.org

© 2007 UC Regents 33

Other Cluster Toolkits

related work

© 2007 UC Regents 34

OpenMosix
 Overview

 Single system image - all nodes look like one large multiprocessor
 Jobs migrate from machine to machine (based on machine load)
 No changes required for apps to use system

 Interconnects supported
 All IP-based networks

 Custom Linux Kernel
 Download a new kernel
 Or patch and compile
 Install kernel on all nodes

 Supports
 Diskfull
 Diskless

© 2007 UC Regents 35

Warewulf
 Overview

 Install frontend first
• Recommend using RPM-based distribution

 Imaged based installation
• “Virtual node filesystem”

 Attacks problem of generic slave node management
 Standard cluster software not included

 Added separately
 Use ‘chroot’ commands to add in extra software

 Supports
 Diskfull
 Diskless

© 2007 UC Regents 36

Scyld Beowulf
 Single System Image

 Global process ID
 Not a global file system

 Heavy OS modifications to support BProc
 Patches kernel
 Patches libraries (libc)

 Job start on the frontend and are pushed to compute nodes
 Hooks remain on the frontend
 Does this scale to 1000 nodes?

 Easy to install
 Full distribution
 Often compared to Rocks

© 2007 UC Regents 37

SCore
 Research group started in 1992, and based in Tokyo.
 Score software

 Semi-automated node integration using RedHat
 Job launcher similar to UCB’s REXEC
 MPC++, multi-threaded C++ using templates
 PM, wire protocol for Myrinet

 Development has started on SCore Roll

© 2007 UC Regents 38

Scalable Cluster Environment
(SCE)

 Developed at Kasetsart University in Thailand
 SCE is a software suite that includes

 Tools to install, manage, and monitor compute nodes
• Diskless (SSI)
• Diskfull (RedHat)

 A batch scheduler to address the difficulties in deploying and maintaining
clusters

 Monitoring tools (SCMSWeb)
 User installs frontend with RedHat and adds SCE packages.
 Rocks and SCE are working together

 Rocks is good at low level cluster software
 SCE is good at high level cluster software
 SCE Roll is now available for Rocks
 ThaiGrid is SCE + Rocks

© 2007 UC Regents 39

Open Cluster Group
(OSCAR)

 OSCAR is a collection of clustering best practices (software packages)
 PBS/Maui
 OpenSSH
 LAM/MPI

 Image based installation
 Install frontend machine manually
 Add OSCAR packages to frontend
 Construct a “golden image” for compute nodes
 Install with system imager
 “Multi-OS” – Mainly RPM-based distributions (aka Red Hat)

 Started as a consortium of industry and government labs
 NCSA, ORNL, Intel, IBM, Dell, others
 Dell now does Rocks.
 NCSA and IBM are no longer a contributors.

© 2007 UC Regents 40

System Imager
 Originally VA/Linux (used to sell clusters) (now “bald guy software)
 System imaging installation tools

 Manages the files on a compute node
 Better than managing the disk blocks

 Use
 Install a system manually
 Appoint the node as the golden master
 Clone the “golden master” onto other nodes

 Problems
 Doesn’t support heterogeneous
 Not method for managing the software on the “golden master”
 Need “Magic Hands” of cluster-expert admin for every new

hardware build

© 2007 UC Regents 41

Cfengine
 Policy-based configuration management tool for UNIX or NT hosts

 Flat ASCII (looks like a Makefile)
 Supports macros and conditionals

 Popular to manage desktops
 Patching services
 Verifying the files on the OS
 Auditing user changes to the OS

 Nodes pull their Cfengine file and run every night
 System changes on the fly
 One bad change kills everyone (in the middle of the night)

 Can help you make changes to a running cluster

© 2007 UC Regents 42

Kickstart
 RedHat

 Automates installation
 Used to install desktops
 Foundation of Rocks

 Description based installation
 Flat ASCII file
 No conditionals or macros
 Set of packages and shell scripts that run to install a

node

© 2007 UC Regents 43

LCFG
 Edinburgh University

 Anderson and Scobie
 Description based installation

 Flat ASCII file
 Conditionals, macros, and statements

• Full blown (proprietary) language to describe a node
 Compose description file out of components

 Using file inclusion
 Not a graph as in Rocks

 Do not use kickstart
 Must replicate the work of RedHat

 Very interesting group
 Design goals very close to Rocks
 Implementation is also similar

© 2007 UC Regents 44

Rocks Basic Approach
 Install a frontend

1. Insert Rocks Base CD
2. Insert Roll CDs (optional components)
3. Answer a few screens of configuration

data
4. Drink coffee/tea/beer (takes about 30

minutes to install)
 Install compute nodes:

1. Login to frontend
2. Execute insert-ethers
3. Boot compute node with Rocks Base

CD (or PXE)
4. Insert-ethers discovers nodes
5. Goto step 3

 Add user accounts
 Start computing

Optional Rolls
 Condor
 Grid (GT4)
 Java
 SCE (developed in Thailand)
 Sun Grid Engine
 PBS (developed in Norway)
 Area51 (security monitoring tools)
 Many Others …

© 2007 UC Regents 45

Minimum Requirements
 Frontend

 2 Ethernet Ports
 CDROM
 18 GB Disk Drive
 512 MB RAM

 Compute Nodes
 1 Ethernet Port
 18 GB Disk Drive
 512 MB RAM

 Complete OS Installation on all Nodes
 No support for Diskless (yet)
 Not a Single System Image
 All Hardware must be supported by RHEL

© 2007 UC Regents 46

key point

The frontend machine of the cluster
requires two Ethernet ports.

© 2007 UC Regents 47

HPCwire Reader’s Choice
Awards for 2004/2005

 Rocks won in Several categories:
 Most Important Software Innovation (Reader’s Choice)
 Most Important Software Innovation (Editor’s Choice)
 Most Innovative - Software (Reader’s Choice)

© 2007 UC Regents 48

Commercial Interest

© 2007 UC Regents 49

Registration Page
(optional)

© 2007 UC Regents 50

User Base
 > 1300 Users on the Discussion List
 5 Continents
 University, Commercial, Hobbyist

© 2007 UC Regents 51

key point

High Performance Computing Community is eager to
adopt open-source clustering solutions

© 2007 UC Regents 52

Optimization?

Re-inventing the wheel
does not advance
science

© 2007 UC Regents 53

A Tale of a Cluster Tuner
(288 AthlonMP Hand Built Machine)

© 2007 UC Regents 54

07.2002: The Idea

© 2007 UC Regents 55

08.2002 - 11.2002: Construction

© 2007 UC Regents 56

12.2002: Build Complete & Celebration

 Machine only 50% operational
 But, they are getting results
 Machine is fully operational 3 months later

© 2007 UC Regents 57

Summary
 07.2002

 Design system
 08.2002 - 11.2002

 Build system
 03.2003

 System in Production
 7 months (maybe 8)

 Concept to Cluster
 Still just a Beowulf
 Moore-cycle is 18 months

• Half life for performance
• Half life for cost

 Useful life is 36-48 months
 What did they optimize for?

© 2007 UC Regents 58

Rockstar Cluster
 129 Sun Fire V60x servers

 1 Frontend Node
 128 Compute Nodes

 Gigabit Ethernet
 $13,000 (US)
 9 24-port switches
 8 4-gigabit trunk uplinks

 Built live at SC’03
 In under two hours
 Running applications

 Top500 Ranking
 11.2003: 201
 06.2004: 433
 49% of peak

© 2007 UC Regents 59

Rockstar Topology

 24-port switches
 Not a symmetric network

 Best case - 4:1 bisection bandwidth
 Worst case - 8:1
 Average - 5.3:1

© 2007 UC Regents 60

Super Computing 2003 Demo
 We wanted to build a Top500

machine live at SC’03
 From the ground up (hardware and

software)
 In under two hours

 Show that anyone can build a super
computer with:
 Rocks (and other toolkits)
 Money
 No army of system administrators

required
 HPC Wire Interview

 HPCwire: What was the most
impressive thing you’ve seen at
SC2003?

 Larry Smarr: I think, without question,
the most impressive thing I’ve seen
was Phil Papadopoulos’ demo with
Sun Microsystems.

© 2007 UC Regents 61

Building Rockstar

© 2007 UC Regents 62

Standard Rocks Installation
 Day 1 - Idea
 Day 30 - Production

 Not just us, world
wide user base has
done the same

© 2007 UC Regents 63

Example:
NCSA (National Center for Supercomputing Applications)

 Tungsten2
 520 Node Cluster
 Dell Hardware
 Topspin Infiniband

 Deployed 11.2004
 Easily in top 100 of the 06.2005

top500 list
 “We went from PO to crunching

code in 2 weeks. It only took
another 1 week to shake out
some math library conflicts, and
we have been in production ever
since.” -- Greg Keller, NCSA (Dell On-site
Support Engineer)

Core
Fabric

Edge
Fabric

6 72-port
TS270

29 24-port
 TS120

174 uplink
cables

512 1m
cables

18
Compute

Nodes

18
Compute

Nodes

source: topspin (via google)

2nd Largest registered Rocks cluster

© 2007 UC Regents 64

NCSA
National Center for Supercomputing Applications

 Tungsten2
 520 Node Cluster
 Dell Hardware
 Topspin Infiniband

 Deployed 11.2004
 Easily in top 100 of the 06.2005

top500 list
 “We went from PO to crunching

code in 2 weeks. It only took
another 1 week to shake out
some math library conflicts, and
we have been in production ever
since.” -- Greg Keller, NCSA (Dell On-site
Support Engineer)

Core
Fabric

Edge
Fabric

6 72-port
TS270

29 24-port
 TS120

174 uplink
cables

512 1m
cables

18
Compute

Nodes

18
Compute

Nodes

source: topspin (via google)

Largest registered Rocks cluster

© 2007 UC Regents 65

Lost Time = Lost Computation
 Assumption

 Rocks
• 256 2.2 GHz Pentium IV
• 1,126 GFlops
• Available at same time as tuner build
• 1 month to build

 Tuner
• 144 - 264 Athlon-MP 2200+
• 512 - 950 Gflops
• 5 - 7 months to build

 Baseline of 50% CPU efficiency for
Rocks

 Tuner improvement beyond baseline
 10% (55% efficiency)

 20% (60% efficiency)

 50% (75% efficiency)

 Tuner must have 50% gain to catch
baseline after 1.5 years

© 2007 UC Regents 66

Invest in Hardware not People
 Assumptions

 Two salaried tuners
 “Full burden” (salary, grant

overhead, office space, etc) is
$180k / year.

 Invest
 5 months salary into baseline
 $150k (5 months)
 Just buy more nodes

• $2500 / node
 Month 7

 Baseline cluster grows
 54 2.2 GHz servers
 Ignoring Moore’s Law!

 Baseline wins

© 2007 UC Regents 67

Other Tuners
 Kernel Tuning

 “My handcrafted kernel is X times faster.”

 Distribution Tuning
 “Distribution Y is X times faster.”
 RFP: “Vendor will be penalized for a Red Hat only solution”

• Typical of grant purchases (Request For Proposals)

 White-box Tuning
 “White-box vendor Y has a node that is X times cheaper.”

© 2007 UC Regents 68

Conclusion
 Need to factor in the human cost for

optimization
 With commodity hardware prices it is

difficult to justify optimized or tuned
machines

 This is not just a lesson for commodity
clustering

© 2007 UC Regents 69

key point

Spend money on hardware not people

© 2007 UC Regents 70

Questions

