
© 2007 UC Regents 1

Introduction to
Roll Development

Rocks-A-Palooza III

© 2007 UC Regents 2

Rocks Philosophy
 We’ve developed a “cluster compiler”

 XML framework + XML parser + kickstart file
generator

 Source code + preprocessor + linker

 Think about “programming your cluster”
 Not “administering your cluster”

© 2007 UC Regents 3

Goal of Rolls
 Develop a method to reliably install software on

a frontend

 “User-customizable” frontends

 Two established approaches:
 Add-on method
 Rocks method

© 2007 UC Regents 4

Add-on Method
1. User responsible for installing and configuring base

software stack on a frontend
2. After the frontend installation, the user downloads

‘add-on’ packages
3. User installs and configures add-on packages
4. User installs compute nodes

Major issue with add-on method
 The state of the frontend before the add-on packages

are added/configured is unknown

© 2007 UC Regents 5

Rocks Method
 To address the major problem with the add-on method,

we had the following idea:
 All non-RedHat packages must be installed and configured in a

controlled environment

 A controlled environment has a known state

 We chose the RedHat installation environment for the
controlled environment

© 2007 UC Regents 6

Goal of Rolls
 This led to modifying the standard RedHat installer in

order to accept new packages and configuration
 A tricky proposition

 A RedHat distribution is a monolithic entity
• It’s tightly-coupled
• In RHEL 4, a program called “genhdlist” creates binary files (hdlist

and hdlist2) that contain metadata about every RPM in the
distribution

 To add/remove/change an RPM, you need to re-run
genhdlist
 Else, the RedHat install will not recognize the package
 Or worse, it fails during package installation

© 2007 UC Regents 7

Monolithic Software Stack

RPMS genhdlist

© 2007 UC Regents 8

Goal of Rolls
 Problem: To make the frontend user-customizable at

installation time, we needed a mechanism that could
accept new packages

 And, we still wanted to leverage the RedHat installer
 We don’t want to be in the installer business

 Solution: Our implementation makes the RedHat
installer “think” it is just installing a monolithic RedHat
distribution

© 2007 UC Regents 9

Goal of Rolls

 How do you make all the packages above look like a monolithic
distribution?
 Easy! Just run “genhdlist” at release time!

 But, how do you do it when some of the above blocks are optional and/or
unknown?
 An “unknown” block is one produced after the release or by a third-party

© 2007 UC Regents 10

Rolls Function and Value

 Function: Rolls extend/modify stock RedHat
 Value: Third parties can extend/modify Rocks

 Because Rolls can be optional

© 2007 UC Regents 11

The RedHat Installer

© 2007 UC Regents 12

Anaconda: RedHat’s Installer

 Open-source python-based installer
 Developed by RedHat
 (Somewhat) object-oriented

 We extend when we can and insert “shims”
when we can’t

© 2007 UC Regents 13

Anaconda: RedHat’s Installer
 Key tasks:

 Probe hardware
 Ask users for site-specific values

• E.g., IP addresses and passwords
 Insert network and storage drivers

• For network-based installations and to write packages down onto
local disk

 Install packages
• RPMs

 Configure services
• Via shell scripts

© 2007 UC Regents 14

Scripted Installation
 Anaconda achieves “lights-out”

installation via kickstart mechanism
 It reads a “kickstart file”

 Description of how to install a node
 One file composed of three key sections:

 Main: general parameters
 Packages: list of RPMs to install
 Post: scripts to configure services

© 2007 UC Regents 15

Kickstart File
 Main section

rootpw --iscrypted loijgoij5478fj2i9a
zerombr yes
bootloader --location=mbr
lang en_US
langsupport --default en_US
keyboard us
mouse genericps/2
install
reboot
timezone --utc America/Los_Angeles
part

© 2007 UC Regents 16

Kickstart File
 Packages section

%packages --ignoredeps --ignoremissing
@Base
PyXML
atlas
autofs
bc
chkrootkit
contrib-pexpect
contrib-pvfs-config
contrib-python-openssl

© 2007 UC Regents 17

Kickstart File
 Post section

%post

cat > /etc/motd << 'EOF'
Rocks Compute Node
EOF

© 2007 UC Regents 18

Rolls High-Level
Description

© 2007 UC Regents 19

Monolithic Software Stack

© 2007 UC Regents 20

Rolls

 Dissecting the monolithic software stack

© 2007 UC Regents 21

Rolls

 Think of a roll as a “package” on a car

© 2007 UC Regents 22

Getting A Kickstart File

© 2007 UC Regents 23

Use Graph Structure to Dissect
Distribution

 Use ‘nodes’ and ‘edges’ to
build a customized kickstart
file

 Nodes contain portion of
kickstart file
 Can have a ‘main’, ‘package’

and ‘post’ section in node file
 Edges used to coalesce node

files into one kickstart file

© 2007 UC Regents 24

Coalescing Node Files

Compute
Root

 Traverse a graph to build up a
kickstart file

 Makes kickstart file building
flexible

 Easy to share functionality
between disparate node types

Frontend
Root

© 2007 UC Regents 25

Why We Use A Graph
 A graph makes it easy to ‘splice’ in new nodes
 Each Roll contains its own nodes and splices

them into the system graph file

© 2007 UC Regents 26

Rocks Extensions
Installation Timeline

© 2007 UC Regents 27

Install Rocks
Base Graph

© 2007 UC Regents 28

Anaconda Modified to Accept
Rolls

© 2007 UC Regents 29

Install Roll
Graph

© 2007 UC Regents 30

Base +
All Rolls

© 2007 UC Regents 31

Anaconda Modified to Display
New User Input Screens

© 2007 UC Regents 32

Anaconda Modified to Display
New User Input Screens
 How we do it:

 Place a shim in Anaconda to call our screens
instead of the ‘betanag’ RedHat screen

 index = 0
 for key in installSteps:
 if key[0] == "betanag":
 break
 index = index + 1

 installSteps[index] = ("rockswindows", ("id.configFileData",))

 stepToClass["rockswindows"] = ("ksclass",
 "RocksWelcomeWindowGUI")

© 2007 UC Regents 33

Anaconda Modified to Display
New User Input Screens

 Inside an XML node file, you’ll see:

© 2007 UC Regents 34

<screen> <title>Root Password</title>

 <code>
 <!-- the 'validate' functions are in this file -->
 <include file="javascript/password.js"/>
 </code>

 <variable>
 <label>Password</label>
 <name>Private_PureRootPassword</name>
 <type>password</type>
 <size>20</size>
 <value><var name="Private_PureRootPassword"/></value>
 <help>The root password for your cluster.</help>
 </variable>

 <variable>
 <label>Confirm</label>
 <name>Confirm_Private_PureRootPassword</name>
 <type>password</type>
 <size>20</size>
 <value><var name="Confirm_Private_PureRootPassword"/></value>
 <validate>confirm_password</validate>
 </variable>

</screen>

© 2007 UC Regents 35

Copy Media To Local Disk

 Base and all user-supplied Rolls are copied to local disk
 These packages are used to install compute nodes

© 2007 UC Regents 36

Rebind Distro

 Merge base with rolls into one RedHat-compliant distribution
 This takes the dissected distro and tightly binds it

• Note: We actually install the frontend off the local hard disk (not the CD
media)

© 2007 UC Regents 37

Rebuild the Kickstart File

 Traverse the final graph using the node ‘frontend’ as the root
 Allows us to customize a frontend configuration at install time

© 2007 UC Regents 38

Hand Off To RedHat

 Anaconda has no idea what hit it!
 The remainder of the installation looks like a standard RedHat installation

(just with more packages and cluster-specific configuration)

© 2007 UC Regents 39

Near Future

© 2007 UC Regents 40

Rocks Futures
 Rocks 4.3

 Rocks command line
• General form:

• rocks <verb> <modifier> <component> <host1> <host2>
• For example:

• rocks-partition --list --nodename compute-0-0
• Becomes:

• rocks list host partition compute-0-0

 Viz Roll x86_64 version
• Now using all the bits!

© 2007 UC Regents 41

Rocks Futures
 Rocks 4.3

 PXE First
• Change compute node boot order from:

• CD, Hard Disk, PXE
• To:

• CD, PXE, Hard Disk

• Enables easy ways in which to:
• Execute ‘memtest86’ on compute nodes
• Flash BIOS
• ‘Headless’ installs on groups of nodes

 Release: End of June 2007

© 2007 UC Regents 42

Rocks Futures
 Rocks 5.0

 Base OS will be RHEL 5
• Key technology in RHEL 5 is Xen

 Release: December 2007 (at the earliest)

