
© 2006 UC Regents! 1!

Introduction to  
Roll Development!

Rocks-A-Palooza II!

© 2006 UC Regents! 2!

Rocks Philosophy!
 Weʼve developed a “cluster compiler”!

 XML framework + XML parser + kickstart file
generator!

 Source code + preprocessor + linker!

 Think about “programming your cluster”!
 Not “administering your cluster”!

© 2006 UC Regents! 3!

Goal of Rolls!
 Develop a method to reliably install software on

a frontend!

  “User-customizable” frontends!

 Two established approaches:!
  Add-on method!
  Rocks method!

© 2006 UC Regents! 4!

Add-on Method!
1.  User responsible for installing and configuring base

software stack on a frontend!
2.  After the frontend installation, the user downloads

ʻadd-onʼ packages!
3.  User installs and configures add-on packages!
4.  User installs compute nodes!

Major issue with add-on method!
  The state of the frontend before the add-on packages

are added/configured is unknown!

© 2006 UC Regents! 5!

Rocks Method!
  To address the major problem with the add-on method,

we had the following idea:!
  All non-RedHat packages must be installed and configured in a

controlled environment!

  A controlled environment has a known state!

  We chose the RedHat installation environment for the
controlled environment!

© 2006 UC Regents! 6!

Goal of Rolls!
  This led to modifying the standard RedHat installer in

order to accept new packages and configuration!
  A tricky proposition!

  A RedHat distribution is a monolithic entity!
•  Itʼs tightly-coupled!
•  A program called “genhdlist” creates binary files (hdlist and hdlist2)

that contain metadata about every RPM in the distribution!

  To add/remove/change an RPM, you need to re-run
genhdlist!
  Else, the RedHat install will not recognize the package!
  Or worse, it fails during package installation!

© 2006 UC Regents! 7!

Monolithic Software Stack!

RPMS genhdlist

© 2006 UC Regents! 8!

Goal of Rolls!
  Problem: To make the frontend user-customizable at

installation time, we needed a mechanism that could
accept new packages!

  And, we still wanted to leverage the RedHat installer!
  We donʼt want to be in the installer business!

  Solution: Our implementation makes the RedHat
installer “think” it is just installing a monolithic RedHat
distribution!

© 2006 UC Regents! 9!

Goal of Rolls!

  How do you make all the packages above look like a monolithic
distribution?!
  Easy! Just run “genhdlist” at release time!!

  But, how do you do it when some of the above blocks are optional and/or
unknown?!
  An “unknown” block is one produced after the release or by a third-party !

© 2006 UC Regents! 10!

Rolls Function and Value!

  Function: Rolls extend/modify stock RedHat!
  Value: Third parties can extend/modify Rocks!

  Because Rolls can be optional!

© 2006 UC Regents! 11!

The RedHat Installer!

© 2006 UC Regents! 12!

Anaconda: RedHatʼs Installer!

 Open-source python-based installer!
 Developed by RedHat!
 (Somewhat) object-oriented!

 We extend when we can and insert “shims”
when we canʼt!

© 2006 UC Regents! 13!

Anaconda: RedHatʼs Installer!
  Key tasks:!

  Probe hardware!
  Ask users for site-specific values!

•  E.g., IP addresses and passwords!
  Insert network and storage drivers!

•  For network-based installations and to write packages down onto
local disk!

  Install packages!
•  RPMs!

  Configure services!
•  Via shell scripts!

© 2006 UC Regents! 14!

Scripted Installation!
 Anaconda achieves “lights-out”

installation via kickstart mechanism!
 It reads a “kickstart file”!

 Description of how to install a node!
 One file composed of three key sections:!

 Main: general parameters!
 Packages: list of RPMs to install!
 Post: scripts to configure services !

© 2006 UC Regents! 15!

Kickstart File!
 Main section!

rootpw --iscrypted loijgoij5478fj2i9a
zerombr yes
bootloader --location=mbr
lang en_US
langsupport --default en_US
keyboard us
mouse genericps/2
text
install
reboot
timezone --utc America/Los_Angeles
part

© 2006 UC Regents! 16!

Kickstart File!
 Packages section!

%packages --ignoredeps --ignoremissing
@Base
PyXML
atlas
autofs
bc
chkrootkit
contrib-pexpect
contrib-pvfs-config
contrib-python-openssl

© 2006 UC Regents! 17!

Kickstart File!
 Post section!

%post

cat > /etc/motd << 'EOF'
Rocks Compute Node
EOF

© 2006 UC Regents! 18!

Rolls High-Level
Description!

© 2006 UC Regents! 19!

Monolithic Software Stack!

© 2006 UC Regents! 20!

Rolls!

 Dissecting the monolithic software stack!

© 2006 UC Regents! 21!

Rolls!

 Think of a roll as a “package” on a car!

© 2006 UC Regents! 22!

Getting A Kickstart File!

© 2006 UC Regents! 23!

Use Graph Structure to Dissect
Distribution!

  Use ʻnodesʼ and ʻedgesʼ to
build a customized kickstart
file!

  Nodes contain portion of
kickstart file!
  Can have a ʻmainʼ, ʻpackageʼ

and ʻpostʼ section in node file!
  Edges used to coalesce node

files into one kickstart file !

© 2006 UC Regents! 24!

Coalescing Node Files!

Compute
Root

  Traverse a graph to build up a
kickstart file!

  Makes kickstart file building
flexible!

  Easy to share functionality
between disparate node types!

Frontend
Root

© 2006 UC Regents! 25!

Why We Use A Graph!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices

them into the system graph file!

© 2006 UC Regents! 26!

Rocks Extensions 
Installation Timeline!

© 2006 UC Regents! 27!

Install Rocks 
Base Graph!

© 2006 UC Regents! 28!

Anaconda Modified to Accept
Rolls!

© 2006 UC Regents! 29!

Install Roll  
Graph!

© 2006 UC Regents! 30!

Base + 
All Rolls!

© 2006 UC Regents! 31!

Anaconda Modified to Display
New User Input Screens!

© 2006 UC Regents! 32!

Anaconda Modified to Display
New User Input Screens!
 How we do it:!

 Place a shim in Anaconda to call our screens
instead of the ʻbetanagʼ RedHat screen!

 index = 0
 for key in installSteps:
 if key[0] == "betanag":
 break
 index = index + 1

 installSteps[index] = ("rockswindows", ("id.rocks",))

 # set list of user-defined windows
 dispatch.skipStep("rockswindows", skip = 0)
 stepToClasses["rockswindows"] = ("ksclass",
 tuple(rockswindows))

© 2006 UC Regents! 33!

Anaconda Modified to Display
New User Input Screens!
 How you use it:!

 In your XML file:!
<installclass>

class CACLInfoWindow:

def __call__(self, screen, Info):

 bb = ButtonBar (screen, (TEXT_OK_BUTTON, ("Back","back")))
 toplevel = GridFormHelp (screen,
 _("CACL Setup Information"), "CACLInfo", 1, 3)
 leftGrid = Grid(1,12)
 rightGrid = Grid(1,12)
 infoGrid = Grid(2,1)
 .
 .

addScreen("CACLInfoWindow")

</installclass>

© 2006 UC Regents! 34!

Copy Media To Local Disk!

  Base and all user-supplied Rolls are copied to local disk!
  These packages are used to install compute nodes!

© 2006 UC Regents! 35!

Rebind Distro!

  Merge base with rolls into one RedHat-compliant distribution!
  This takes the dissected distro and tightly binds it!

•  Note: We actually install the frontend off the local hard disk (not the CD
media)!

© 2006 UC Regents! 36!

Rebuild the Kickstart File!

  Traverse the final graph using the node ʻfrontendʼ as the root!
  Allows us to customize a frontend configuration at install time!

© 2006 UC Regents! 37!

Hand Off To RedHat!

  Anaconda has no idea what hit it!!
  The remainder of the installation looks like a standard RedHat installation

(just with more packages and cluster-specific configuration)!

© 2006 UC Regents! 38!

Near Future!

© 2006 UC Regents! 39!

Rocks Futures!
 Rocks 4.2!

  Graphical installer!
  ʻRestoreʼ Roll!

•  Package files on the frontend into a roll!
•  Used to configure a frontend without having to fill out the

user-configuration screens!
•  Also, quick way to restore to ʻknown-good stateʼ or recover

from a failed frontend!

 Rocks 5.0!
  Base OS will be RHEL 5!

•  Key technology in RHEL 5 is Xen!

© 2006 UC Regents! 40!

Roll Development Basics!

© 2006 UC Regents! 41!

Available Rolls for Rocks 4.1!
 Rolls we provide!

  Area51!
•  Security analysis tools!

  Condor!
  HPC!

•  MPICH and cluster tools!
  Grid!

•  Globus!
  SGE!
  Viz!
  Java!

© 2006 UC Regents! 42!

Available Rolls for Rocks 4.1!
  Rolls produced by academic community!

  PBS/Maui!
•  HPC group at University of Tromso, Norway!

  SCE - Scalable Computing Environment!
•  University of Kasetsart, Thailand!

  APBS (Adaptive Poisson-Boltzmann Solver)!
•  NBCR group, UCSD!

  MEME!
•  NBCR group, UCSD!
•  Tools for discovering and using protein and DNA sequence

motifs!
  Ninf-G!

•  AIST, Japan!
•  RPC for the grid!

© 2006 UC Regents! 43!

Available Rolls for Rocks 4.1!
  Rolls produced by commercial entities!

  Scalable Systems (Singapore)!
•  RxC (Rocks web-based console)!
•  Intel (Compilers, libraries and MPI environment)!
•  Lustre Roll (available as beta release)!
•  Bootstrapped the PVFS and SGE rolls!

  Quadrics!
•  Interconnect Roll!

  Voltaire, SilverStorm, Topspin!
•  IB Rolls!

  Myricom!
•  Myrinet Roll!

  Scalable Informatics!
•  ScalableInformatics Roll (cluster tools)!

  Absoft!
•  Another Intel tools roll!

© 2006 UC Regents! 44!

Roll Contents!
  RPMS!

  Your software.!
  Tasks:!

•  Package bits into RPM !

  Kickstart Graph!
  Your configuration.!
  Tasks:!

•  Verify correct files exist after installation!
•  Verify correct operation on frontend, computes.!
•  Test, Test, Test!

© 2006 UC Regents! 45!

Rolls Codify Configuration for
Cluster Services!

 How do you
configure NTP on
compute nodes?!
 ntp-client.xml:!

<post>

<!-- Configure NTP to use an external server -->

<file name="/etc/ntp.conf">
server <var name="Kickstart_PrivateNTPHost"/>
authenticate no
driftfile /var/lib/ntp/drift
</file>

<!-- Force the clock to be set to the server upon reboot -->

/bin/mkdir -p /etc/ntp

<file name="/etc/ntp/step-tickers">
<var name="Kickstart_PrivateNTPHost"/>
</file>

<!-- Force the clock to be set to the server right now -->

/usr/sbin/ntpdate <var name="Kickstart_PrivateNTPHost"/>
/sbin/hwclock --systohc
</post>

© 2006 UC Regents! 46!

Kickstart File!
 RedHatʼs Kickstart: DNA of a

node!
 Monolithic flat ASCII file!

•  “Main”: disk partitioning, timezone!
•  “Packages”: list of RPM names!
•  “Post”: shell scripts for config!

 No macro language!
 Requires forking based on site

information and node type.!

© 2006 UC Regents! 47!

Getting A Kickstart File!

© 2006 UC Regents! 48!

Kickstart File!
 Rocks XML Kickstart!

 Decompose a kickstart file into nodes and a
graph!
•  Graph specifies OO framework!
•  Each node specifies a service and its

configuration!
 SQL Database to help site configuration!
 “Compile” flat kickstart file from a web cgi

script!

© 2006 UC Regents! 49!

Kickstart Graph for Kgen!

Compile (kgen)

© 2006 UC Regents! 50!

Kickstart Graph with Roll!

© 2006 UC Regents! 51!

Full Kickstart Graph!

© 2006 UC Regents! 52!

Kickstart XML Language!
 Graph contains!

 Nodes!
•  Rich language to help with configuration tasks!

 Edges!
•  Simple. Defines node MEMBERSHIP in

compiled kickstart files!
 Order !

•  Simple syntax. Defines POST SECTION
ORDER among nodes.!

© 2006 UC Regents! 53!

Example Roll: Sweetroll!
 Will use a fictitious roll named

“Sweetroll”!

<?xml version="1.0" standalone="no"?>

<kickstart>
 <description>
The sweet roll.
 <description>
</kickstart>!

© 2006 UC Regents! 54!

Kickstart Nodes!
 Altering Default Nodes!

 Can replace or extend default nodes in Roll!
•  Extend: concatenate extend and default nodes!
•  Replace: overwrite default node!

 Discouraged use: Reserved for end users!
 Extend by name: extend-[node].xml!

•  sweetroll/nodes/extend-compute.xml!

 Replace by name: replace-[node].xml !
•  sweetroll/nodes/replace-compute.xml!

© 2006 UC Regents! 55!

Kickstart Nodes!
 Graph!

  Nodes!
•  Rich language to help with configuration tasks!

•  “Main” section!
•  “Package” section!
•  “Post” section!
•  “Installclass” section!

•  Used to modify Anaconda!

© 2006 UC Regents! 56!

Nodes XML Tools: <var>!
 Get Variables from Database!

  <var name=“Kickstart_PrivateAddress”/>!
  <var name=“Node_Hostname”/>!

 Can grab any value from the app_globals
database table!

10.1.1.1
compute-0-0

© 2006 UC Regents! 57!

<var> values from app_globals!

 Combine “Service” and “Component”!
  For example, Kickstart_PublicAddress!

© 2006 UC Regents! 58!

Nodes XML Tools: <var>!
  <var> attributes!

  name!
•  Required. Format is “Service_Component”!
•  Service and Component relate to column names in the

app_global database table.!
  val!

•  Optional. Sets the value of this variable!
•  <var name=“Info_ClusterName” val=“Seinfeld”/>!

  ref!
•  Optional. Set this variable equal to another!

•  <var name=“Info_Weather” ref=“Info_Forecast”/>!

© 2006 UC Regents! 59!

Nodes XML Tools: <eval>!
 Do processing on the frontend:!

  <eval shell=“bash”>!

 To insert a fortune in the kickstart file:!

"Been through Hell?
Whaddya bring back for
me?"
-- A. Brilliant

<eval shell=“bash”>!
/usr/games/fortune!
</eval>!

© 2006 UC Regents! 60!

Nodes XML Tools: <eval>!
  <eval> attributes!

  shell!
•  Optional. The interpreter to use. Default “sh”!

  mode!
•  Optional. Value is quote or xml. Default of quote specifies for kpp

to escape any XML characters in output.!
•  XML mode allows you to generate other tags:!

•  <eval shell=“python” mode=“xml”>!
•  import time!
•  now = time.time() !
•  print “<var name=ʻInfo_Nowʼ val=ʻ%sʼ/>” % now!

•  </eval>!

© 2006 UC Regents! 61!

Nodes XML Tools: <eval>!
  Inside <eval> variables are not accessed with

<var>: use the environment instead.!

<eval shell=“python”>
import os
print “My NTP time server is”,
 os.environ[‘Kickstart_PublicNTPHost’]
print “Got it?”
</eval>!

My NTP time server is time.apple.com
Got it?

<eval shell=“sh”>
echo “My NTP time server is
$Kickstart_PublicNTPHost”
echo “Got it?”
</eval>!

My NTP time server is time.apple.com
Got it?

© 2006 UC Regents! 62!

Nodes XML Tools <include>!
  Auto-quote XML characters in a file!

  <include file=“foo.py”/>!

  Quotes and includes file!
sweetroll/include/foo.py!

  foo.py (native) ➞ foo.py (quoted xml):!

#!/usr/bin/python

import sys

def hi(s):
 print >> sys.stderr, s!

#!/usr/bin/python

import sys

def hi(s):
 print >> sys.stderr, s

© 2006 UC Regents! 63!

Nodes XML Tools: <include>!
 <include> attributes!

 file!
•  Required. The file to include (relative to

“include/”) dir in roll src.!
 mode!

•  Optional. Value is quote or xml. Default of quote
specifies for kpp to escape any XML characters
in file.!

•  <include file=“my-favorite-things” mode=“quote”/>!

© 2006 UC Regents! 64!

Nodes XML Tools <file>!
  Create a file on the system:!

  <file name=“/etc/hi-mom” mode=“append”>!
•  How are you today?!

  </file>!

  Used extensively throughout Rocks post sections!
  Keeps track of alterations automatically via RCS.!

<file name=“/etc/hi” perms=“444”>
How are you today?
I am fine.
</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’
How are you today?
I am fine.
EOF
chmod 444 /etc/hi-mom
…RCS cleanup commands…

© 2006 UC Regents! 65!

Nodes XML Tools: <file>!
  <file> attributes!

  name!
•  Required. The full path of the file to write.!

  mode!
•  Optional. Value is “create” or “append”. Default is create.!

  owner!
•  Optional. Value is “user.group”, can be numbers or names.!

•  <file name=“/etc/hi” owner=“daemon.root”>!
  perms!

•  Optional. The permissions of the file. Can be any valid “chmod” string.!
•  <file name=“/etc/hi” perms=“a+x”>!

© 2006 UC Regents! 66!

Nodes XML Tools: <file>!
  <file> attributes (continued)!

  vars!
•  Optional. Value is “literal” or “expanded”. In literal (default), no

variables or backticks in file contents are processed. In
expanded, they work normally.!

•  <file name=“/etc/hi” vars=“expanded”>!
•  The current date is `date`!

•  </file> !
  expr!

•  Optional. Specifies a command (run on the frontend)
whose output is placed in the file.!

•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>!

© 2006 UC Regents! 67!

Fancy <file>: nested tags!

<file name=“/etc/hi”>

Here is your fortune for today:
<eval>
date +”%d-%b-%Y”
echo “”
/usr/games/fortune
</eval>

</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’

Here is your fortune for today:
13-May-2005

"Been through Hell? Whaddya
bring back for me?"
-- A. Brilliant

EOF
…RCS cleanup commands…

© 2006 UC Regents! 68!

Nodes Main!
  Used to specify basic configuration:!

  timezone!
  mouse, keyboard types !
  install language!

  Used more rarely than other tags!
  Rocks main tags are usually a straight translation: !

<main>

 <timezone>America/Mission_Beach
 </timezone>

</main>!

…
timezone America/Mission_Beach
…
rootpw --iscrypted sndk48shdlwis
mouse genericps/2
url --url http://10.1.1.1/install/rocks-dist/..

© 2006 UC Regents! 69!

Nodes Main: Partitioning!
  <main> !

  <part> / --size 8000 --ondisk hda </part> !
  <part> swap --size 1000 --ondisk hda </part> !
  <part> /mydata --size 1 --grow --ondisk hda </
part>!

  </main>!

part / --size 8000 --ondisk hda !
part swap --size 1000 --ondisk hda !
part /mydata --size 1 --grow --ondisk hda !

© 2006 UC Regents! 70!

Nodes Packages!
  <package>java</package> !

  Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ʻjavaʼ.!

  <package arch=“x86_64”>java</package>!
  Only install this package on x86_64 architectures!

  <package arch=“i386,x86_64”>java</package>!

<package>newcastle</package>
<package>stone-pale</package>
<package>guinness</package>!

%packages
newcastle
stone-pale
guinness

© 2006 UC Regents! 71!

Nodes Packages!
 RPMS are installed brute-force: no dependancy

checking, always --force!

© 2006 UC Regents! 72!

Nodes Packages!
 RPM name is a basename (not fullname of

RPM)!
  For example, RPM name of package below is ʻkernelʼ!
rpm -qip /home/install/rocks-dist/lan/i386/RedHat/RPMS/kernel-2.6.9-22.EL.i686.rpm
Name : kernel Relocations: (not relocatable)
Version : 2.6.9 Vendor: CentOS
Release : 22.EL Build Date: Sun 09 Oct 2005 03:01:51 AM WET
Install Date: (not installed) Build Host: louisa.home.local
Group : System Environment/Kernel Source RPM: kernel-2.6.9-22.EL.src.rpm
Size : 25589794 License: GPLv2
Signature : DSA/SHA1, Sun 09 Oct 2005 10:44:40 AM WET, Key ID a53d0bab443e1821
Packager : Johnny Hughes <johnny@centos.org>
Summary : the linux kernel (the core of the linux operating system)
Description :
The kernel package contains the Linux kernel (vmlinuz), the core of any
Linux operating system

© 2006 UC Regents! 73!

Nodes Post!
 <post> for Post-Install configuration scripts!
 Configuration scripts in <post> section run after

all RPMs have been installed. !
  Useful: you have all your software available!
  Scripts run in “target” environment: /etc in <post> will

be /etc on the final installed system!

 Scripts are always non-interactive!
  No Human is driving!

© 2006 UC Regents! 74!

Nodes Post!

<post>

/bin/mkdir -p /etc/ntp
/usr/sbin/ntpdate <var name="Kickstart_PrivateNTPHost"/>
/sbin/hwclock --systohc

</post>

%post

/bin/mkdir -p /etc/ntp
/usr/sbin/ntpdate 10.1.1.1
/sbin/hwclock --systohc

ntp-client.xml

© 2006 UC Regents! 75!

Nodes Post Section !
  Scripts have minimal $PATH (/bin, /usr/bin)!
  Error reporting is minimal !

  Write to personal log file if you need debugging!

  Not all services are up. Network is however.!
  Order tag is useful to place yourself favorably relative to other

services!

  Can have multiple <post> sections in a single node!

© 2006 UC Regents! 76!

Nodes XML Tools: <post>!
  <post> attributes!

  arch!
•  Optional. Specifies which architectures to apply package. !

  arg!
•  Optional. Anaconda arguments to %post!

•  --nochroot (rare): operate script in install environment,
not target disk.!

•  --interpreter: specifies script language!

•  <post arg=“--nochroot --interpreter /usr/bin/python”>!

© 2006 UC Regents! 77!

Post Example: PXE config!
<post arch=“x86_64,i386”>
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name=“/tftpboot/pxe../default”>
default ks
prompt 0
label ks

 kernel vmlinuz
 append ks inird=initrd.img……

</file>
</post>

<post arch=“ia64”>

<!-- Itaniums do PXE differently -->
…

</post>!

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

…RCS…
cat > /tftpboot/pxe../default << EOF
default ks
prompt 0
…
EOF
..RCS…

for an x86_64 machine:

© 2006 UC Regents! 78!

A Real Node file: ssh!
<kickstart>

 <description>
 Enable SSH
 </description>

 <package>openssh/package>
 <package>openssh-clients</package>
 <package>openssh-server</package>
 <package>openssh-askpass</package>

<post>

<file name="/etc/ssh/ssh_config">
Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

© 2006 UC Regents! 79!

Graph Edges!
  <edge>!
  Specifies membership in a kickstart file!

•  To make a kickstart file for a compute node type: !
1.  Take contents of “compute” xml node!
2.  Follow all outgoing edges from “compute”!
3.  Take all contents of child node!
4.  Follow all its outgoing edges, etc, etc, etc!

  Edges between nodes listed in a “graph” file!
•  sweetroll/graphs/default/sweetroll.xml!

  All graph files concatenated together!

© 2006 UC Regents! 80!

Graph Edges: <edge>!
  <edge> attributes!

  from!
•  Required. The name of a node at end of the edge!

•  <edge from=“base” to=“autofs”/> !
  to!

•  Required. The name of a node at the head of an edge!
  arch!

•  Optional. Which architecture should follow this edge. Default is
all.!

  gen!
•  Optional. Which generator should follow this edge. Default is

“kgen”!

© 2006 UC Regents! 81!

Graph Edges!
 <edge from=“security-server” to=“central”/>!

<edge from=“client”>!
<to arch=“i386,x86_64”>grub-client</to>!
<to>autofs-client</to>!
<to>installclass-client</to>!

</edge>!

© 2006 UC Regents! 82!

Graph Ordering!
  Added recently to give us control over when node <post>

sections are run!
•  <order head="database">!

•  <tail>database-schema</tail>!
•  </order>!

  database node appears before database-schema in all kickstart
files.!

  Special HEAD and TAIL nodes represent “first” and “last” (post sections
that you want to run first/last)!

•  <order head=“installclass” tail=“HEAD”/> !BEFORE HEAD!

•  <order head=“TAIL” tail=“postshell”/> !AFTER TAIL!

© 2006 UC Regents! 83!

Graph Ordering: <order>!
  <order> attributes!

  head!
•  Required. The name of a node whose <post> section will appear

BEFORE in the kickstart file.!
  tail!

•  Required. The name of a node whose <post> section will appear AFTER
in the kickstart file.!

•  <order head=“grub” tail=“grub-server”/>!
  arch!

•  Optional. Which architecture should follow this edge. Default is all.!
  gen!

•  Optional. Which generator should follow this edge. Default is “kgen”!

© 2006 UC Regents! 84!

When Things Go Wrong!
 Test your Kickstart Graph!

  Check XML syntax: xmllint!
  Make a kickstart file!

•  Make kickstart file as a node will see it!

  Low level functionality test: kpp!
•  Run the kickstart compilers by hand!

dbreport kickstart compute-0-0 > /tmp/ks.cfg

© 2006 UC Regents! 85!

When Things Go Wrong!
  Test your Kickstart Graph !

  Check XML syntax: xmllint!
•  # cd sweetroll/nodes!
•  # xmllint --noout sweetroll.xml!

<?xml version="1.0" standalone="no"?>

<kickstart>
 <description>
The sweet roll. This roll is just sweet!
 <description>
</kickstart>!

xmllint --noout sweetroll.xml!

sweetroll.xml:7: parser error : Opening and
ending tag mismatch: description line 6 and
kickstart
</kickstart>
 ^

© 2006 UC Regents! 86!

When Things Go Wrong!
  Test your Kickstart Graph!

  Make a kickstart file!

  First, install Sweetroll “on-the-fly”:!
•  # make roll; mount -o loop sweetroll-*.iso /mnt/cdrom!
•  # rocks-dist copyroll; umount /mnt/cdrom!
•  # cd /home/install; rocks-dist dist!
•  # kroll sweetroll > /tmp/install-sweetroll.sh!
•  # sh /tmp/install-sweetroll.sh!

© 2006 UC Regents! 87!

When Things Go Wrong!
  Test your Kickstart Graph!

  With Sweetroll XML in place:!

  Open /tmp/ks.cfg and look for the section:!

  (We do this 10 times a day during release phase)!
  Exactly the same as what a compute node actually sees during

installation!

cat >> /root/install.log << 'EOF'!
./nodes/sweetroll.xml: begin post section

dbreport kickstart compute-0-0 > /tmp/ks.cfg

© 2006 UC Regents! 88!

When Things Go Wrong!
  Test your Kickstart Graph!

  Low level functionality test: kpp!
•  Run the kickstart compilers by hand!

•  For more difficult to diagnose problems!
  KPP is Kickstart Pre Processor: runs <eval>, <var>!
  KGEN is generator: turns XML into kickstart!

•  # cd /home/install/rocks-dist/lan/x86_64/build!
•  # kpp sweetroll!
•  # kpp sweetroll | kgen!

© 2006 UC Regents! 89!

RPM Building!

© 2006 UC Regents! 90!

Building an RPM!
 Generic RPMs are built with ʻspecʼ file

and ʻrpmbuildʼ!
 It takes time to learn how to write a spec

file!
 Can use Rocks development source tree

to create RPMs without having to make a
spec file!

© 2006 UC Regents! 91!

Building an RPM!
 Weʼll do the full procedure in the ʻCluster

Management and Maintenance Labʼ!
 Short story!

  Checkout rocks development source tree!
  Make a new roll from a ʻtemplateʼ roll!
  Download the source tarball!
  Update a description file (version.mk)!
  Execute: make rpm!

•  Assumes tarball adheres to ʻconfigure, make, make installʼ!

© 2006 UC Regents! 92!

Loader Modifications!

© 2006 UC Regents! 93!

Loader Modifications!
 The first program that runs during a

RedHat install is a C program called
“loader”!

 Performs low-level setup!
 Loads drivers !
 Configures network!
 Downloads anaconda!
 Gets kickstart file!

© 2006 UC Regents! 94!

Loader Modifications!
 Make HTTP the default install method!

 RedHat uses NFS as default!

 Rationale!
 Installation is read-only, donʼt need a file

system!
 HTTP traffic can be easily load balanced!
 Peer-to-peer networks use HTTP!

© 2006 UC Regents! 95!

Loader Modifications!
  Robust kickstart file acquistion!

  10 retries to get kickstart file!
•  RedHat has only 1!

  NACK to throttle kickstart file acquistion!
•  When load on frontend is high, the compute node is told to wait

before next retry!

  Rationale!
  The kickstart file is everything -- without it, a node is just a

$2,000 paperweight!
  NACK feature is for supporting large cluster reinstallations!

© 2006 UC Regents! 96!

Loader Modifications!
 Watchdog!

  If canʼt get kickstart file or if there is an error during
the installation, reboot!

•  This will restart the installation!
•  RedHat just halts!

 Rationale!
  Again, the kickstart file is everything!

© 2006 UC Regents! 97!

Loader Modifications!
 Network-based frontend installations!

  In Rocks lingo: a “central” install!

 Rationale!
  The “CD dance” during installation is not optimal!
  Needed to support grids of clusters from a central

place!
  Huge benefit for development!

•  Donʼt have to burn CDs just to test code changes!

© 2006 UC Regents! 98!

Loader Modifications!
 Secure kickstart!

  Added HTTPS support!

 Rationale!
  Needed for support of network-based frontend

installations (“central” installs)!
•  Donʼt want the root password for the frontend sent over the

network in the clear!!
  Useful for compute nodes that are installed over a

public network!

© 2006 UC Regents! 99!

Loader Modifications!
 Support adding compute node to any ethernet

interface!
  The first interface that receives a kickstart file, is

anointed ʻeth0ʼ!

 Rationale!
  Email reduction!

•  We got lots of email from people who plugged their ethernet
cable into the “wrong” port!

  Even the Three Stooges can plug in the cables to the
compute nodes!!

© 2006 UC Regents! 100!

Loader Modifications!
 Bug Fixes!

  Added support for multiple CD drives!
  A couple stack overflow problems!

 Rationale!
  Without the fixes, the installer halts!

