
© 2006 UC Regents! 1!

Introduction to  
Roll Development!

Rocks-A-Palooza II!

© 2006 UC Regents! 2!

Rocks Philosophy!
 Weʼve developed a “cluster compiler”!

 XML framework + XML parser + kickstart file
generator!

 Source code + preprocessor + linker!

 Think about “programming your cluster”!
 Not “administering your cluster”!

© 2006 UC Regents! 3!

Goal of Rolls!
 Develop a method to reliably install software on

a frontend!

  “User-customizable” frontends!

 Two established approaches:!
  Add-on method!
  Rocks method!

© 2006 UC Regents! 4!

Add-on Method!
1.  User responsible for installing and configuring base

software stack on a frontend!
2.  After the frontend installation, the user downloads

ʻadd-onʼ packages!
3.  User installs and configures add-on packages!
4.  User installs compute nodes!

Major issue with add-on method!
  The state of the frontend before the add-on packages

are added/configured is unknown!

© 2006 UC Regents! 5!

Rocks Method!
  To address the major problem with the add-on method,

we had the following idea:!
  All non-RedHat packages must be installed and configured in a

controlled environment!

  A controlled environment has a known state!

  We chose the RedHat installation environment for the
controlled environment!

© 2006 UC Regents! 6!

Goal of Rolls!
  This led to modifying the standard RedHat installer in

order to accept new packages and configuration!
  A tricky proposition!

  A RedHat distribution is a monolithic entity!
•  Itʼs tightly-coupled!
•  A program called “genhdlist” creates binary files (hdlist and hdlist2)

that contain metadata about every RPM in the distribution!

  To add/remove/change an RPM, you need to re-run
genhdlist!
  Else, the RedHat install will not recognize the package!
  Or worse, it fails during package installation!

© 2006 UC Regents! 7!

Monolithic Software Stack!

RPMS genhdlist

© 2006 UC Regents! 8!

Goal of Rolls!
  Problem: To make the frontend user-customizable at

installation time, we needed a mechanism that could
accept new packages!

  And, we still wanted to leverage the RedHat installer!
  We donʼt want to be in the installer business!

  Solution: Our implementation makes the RedHat
installer “think” it is just installing a monolithic RedHat
distribution!

© 2006 UC Regents! 9!

Goal of Rolls!

  How do you make all the packages above look like a monolithic
distribution?!
  Easy! Just run “genhdlist” at release time!!

  But, how do you do it when some of the above blocks are optional and/or
unknown?!
  An “unknown” block is one produced after the release or by a third-party !

© 2006 UC Regents! 10!

Rolls Function and Value!

  Function: Rolls extend/modify stock RedHat!
  Value: Third parties can extend/modify Rocks!

  Because Rolls can be optional!

© 2006 UC Regents! 11!

The RedHat Installer!

© 2006 UC Regents! 12!

Anaconda: RedHatʼs Installer!

 Open-source python-based installer!
 Developed by RedHat!
 (Somewhat) object-oriented!

 We extend when we can and insert “shims”
when we canʼt!

© 2006 UC Regents! 13!

Anaconda: RedHatʼs Installer!
  Key tasks:!

  Probe hardware!
  Ask users for site-specific values!

•  E.g., IP addresses and passwords!
  Insert network and storage drivers!

•  For network-based installations and to write packages down onto
local disk!

  Install packages!
•  RPMs!

  Configure services!
•  Via shell scripts!

© 2006 UC Regents! 14!

Scripted Installation!
 Anaconda achieves “lights-out”

installation via kickstart mechanism!
 It reads a “kickstart file”!

 Description of how to install a node!
 One file composed of three key sections:!

 Main: general parameters!
 Packages: list of RPMs to install!
 Post: scripts to configure services !

© 2006 UC Regents! 15!

Kickstart File!
 Main section!

rootpw --iscrypted loijgoij5478fj2i9a
zerombr yes
bootloader --location=mbr
lang en_US
langsupport --default en_US
keyboard us
mouse genericps/2
text
install
reboot
timezone --utc America/Los_Angeles
part

© 2006 UC Regents! 16!

Kickstart File!
 Packages section!

%packages --ignoredeps --ignoremissing
@Base
PyXML
atlas
autofs
bc
chkrootkit
contrib-pexpect
contrib-pvfs-config
contrib-python-openssl

© 2006 UC Regents! 17!

Kickstart File!
 Post section!

%post

cat > /etc/motd << 'EOF'
Rocks Compute Node
EOF

© 2006 UC Regents! 18!

Rolls High-Level
Description!

© 2006 UC Regents! 19!

Monolithic Software Stack!

© 2006 UC Regents! 20!

Rolls!

 Dissecting the monolithic software stack!

© 2006 UC Regents! 21!

Rolls!

 Think of a roll as a “package” on a car!

© 2006 UC Regents! 22!

Getting A Kickstart File!

© 2006 UC Regents! 23!

Use Graph Structure to Dissect
Distribution!

  Use ʻnodesʼ and ʻedgesʼ to
build a customized kickstart
file!

  Nodes contain portion of
kickstart file!
  Can have a ʻmainʼ, ʻpackageʼ

and ʻpostʼ section in node file!
  Edges used to coalesce node

files into one kickstart file !

© 2006 UC Regents! 24!

Coalescing Node Files!

Compute
Root

  Traverse a graph to build up a
kickstart file!

  Makes kickstart file building
flexible!

  Easy to share functionality
between disparate node types!

Frontend
Root

© 2006 UC Regents! 25!

Why We Use A Graph!
 A graph makes it easy to ʻspliceʼ in new nodes!
 Each Roll contains its own nodes and splices

them into the system graph file!

© 2006 UC Regents! 26!

Rocks Extensions 
Installation Timeline!

© 2006 UC Regents! 27!

Install Rocks 
Base Graph!

© 2006 UC Regents! 28!

Anaconda Modified to Accept
Rolls!

© 2006 UC Regents! 29!

Install Roll  
Graph!

© 2006 UC Regents! 30!

Base + 
All Rolls!

© 2006 UC Regents! 31!

Anaconda Modified to Display
New User Input Screens!

© 2006 UC Regents! 32!

Anaconda Modified to Display
New User Input Screens!
 How we do it:!

 Place a shim in Anaconda to call our screens
instead of the ʻbetanagʼ RedHat screen!

 index = 0
 for key in installSteps:
 if key[0] == "betanag":
 break
 index = index + 1

 installSteps[index] = ("rockswindows", ("id.rocks",))

 # set list of user-defined windows
 dispatch.skipStep("rockswindows", skip = 0)
 stepToClasses["rockswindows"] = ("ksclass",
 tuple(rockswindows))

© 2006 UC Regents! 33!

Anaconda Modified to Display
New User Input Screens!
 How you use it:!

 In your XML file:!
<installclass>

class CACLInfoWindow:

def __call__(self, screen, Info):

 bb = ButtonBar (screen, (TEXT_OK_BUTTON, ("Back","back")))
 toplevel = GridFormHelp (screen,
 _("CACL Setup Information"), "CACLInfo", 1, 3)
 leftGrid = Grid(1,12)
 rightGrid = Grid(1,12)
 infoGrid = Grid(2,1)
 .
 .

addScreen("CACLInfoWindow")

</installclass>

© 2006 UC Regents! 34!

Copy Media To Local Disk!

  Base and all user-supplied Rolls are copied to local disk!
  These packages are used to install compute nodes!

© 2006 UC Regents! 35!

Rebind Distro!

  Merge base with rolls into one RedHat-compliant distribution!
  This takes the dissected distro and tightly binds it!

•  Note: We actually install the frontend off the local hard disk (not the CD
media)!

© 2006 UC Regents! 36!

Rebuild the Kickstart File!

  Traverse the final graph using the node ʻfrontendʼ as the root!
  Allows us to customize a frontend configuration at install time!

© 2006 UC Regents! 37!

Hand Off To RedHat!

  Anaconda has no idea what hit it!!
  The remainder of the installation looks like a standard RedHat installation

(just with more packages and cluster-specific configuration)!

© 2006 UC Regents! 38!

Near Future!

© 2006 UC Regents! 39!

Rocks Futures!
 Rocks 4.2!

  Graphical installer!
  ʻRestoreʼ Roll!

•  Package files on the frontend into a roll!
•  Used to configure a frontend without having to fill out the

user-configuration screens!
•  Also, quick way to restore to ʻknown-good stateʼ or recover

from a failed frontend!

 Rocks 5.0!
  Base OS will be RHEL 5!

•  Key technology in RHEL 5 is Xen!

© 2006 UC Regents! 40!

Roll Development Basics!

© 2006 UC Regents! 41!

Available Rolls for Rocks 4.1!
 Rolls we provide!

  Area51!
•  Security analysis tools!

  Condor!
  HPC!

•  MPICH and cluster tools!
  Grid!

•  Globus!
  SGE!
  Viz!
  Java!

© 2006 UC Regents! 42!

Available Rolls for Rocks 4.1!
  Rolls produced by academic community!

  PBS/Maui!
•  HPC group at University of Tromso, Norway!

  SCE - Scalable Computing Environment!
•  University of Kasetsart, Thailand!

  APBS (Adaptive Poisson-Boltzmann Solver)!
•  NBCR group, UCSD!

  MEME!
•  NBCR group, UCSD!
•  Tools for discovering and using protein and DNA sequence

motifs!
  Ninf-G!

•  AIST, Japan!
•  RPC for the grid!

© 2006 UC Regents! 43!

Available Rolls for Rocks 4.1!
  Rolls produced by commercial entities!

  Scalable Systems (Singapore)!
•  RxC (Rocks web-based console)!
•  Intel (Compilers, libraries and MPI environment)!
•  Lustre Roll (available as beta release)!
•  Bootstrapped the PVFS and SGE rolls!

  Quadrics!
•  Interconnect Roll!

  Voltaire, SilverStorm, Topspin!
•  IB Rolls!

  Myricom!
•  Myrinet Roll!

  Scalable Informatics!
•  ScalableInformatics Roll (cluster tools)!

  Absoft!
•  Another Intel tools roll!

© 2006 UC Regents! 44!

Roll Contents!
  RPMS!

  Your software.!
  Tasks:!

•  Package bits into RPM !

  Kickstart Graph!
  Your configuration.!
  Tasks:!

•  Verify correct files exist after installation!
•  Verify correct operation on frontend, computes.!
•  Test, Test, Test!

© 2006 UC Regents! 45!

Rolls Codify Configuration for
Cluster Services!

 How do you
configure NTP on
compute nodes?!
 ntp-client.xml:!

<post>

<!-- Configure NTP to use an external server -->

<file name="/etc/ntp.conf">
server <var name="Kickstart_PrivateNTPHost"/>
authenticate no
driftfile /var/lib/ntp/drift
</file>

<!-- Force the clock to be set to the server upon reboot -->

/bin/mkdir -p /etc/ntp

<file name="/etc/ntp/step-tickers">
<var name="Kickstart_PrivateNTPHost"/>
</file>

<!-- Force the clock to be set to the server right now -->

/usr/sbin/ntpdate <var name="Kickstart_PrivateNTPHost"/>
/sbin/hwclock --systohc
</post>

© 2006 UC Regents! 46!

Kickstart File!
 RedHatʼs Kickstart: DNA of a

node!
 Monolithic flat ASCII file!

•  “Main”: disk partitioning, timezone!
•  “Packages”: list of RPM names!
•  “Post”: shell scripts for config!

 No macro language!
 Requires forking based on site

information and node type.!

© 2006 UC Regents! 47!

Getting A Kickstart File!

© 2006 UC Regents! 48!

Kickstart File!
 Rocks XML Kickstart!

 Decompose a kickstart file into nodes and a
graph!
•  Graph specifies OO framework!
•  Each node specifies a service and its

configuration!
 SQL Database to help site configuration!
 “Compile” flat kickstart file from a web cgi

script!

© 2006 UC Regents! 49!

Kickstart Graph for Kgen!

Compile (kgen)

© 2006 UC Regents! 50!

Kickstart Graph with Roll!

© 2006 UC Regents! 51!

Full Kickstart Graph!

© 2006 UC Regents! 52!

Kickstart XML Language!
 Graph contains!

 Nodes!
•  Rich language to help with configuration tasks!

 Edges!
•  Simple. Defines node MEMBERSHIP in

compiled kickstart files!
 Order !

•  Simple syntax. Defines POST SECTION
ORDER among nodes.!

© 2006 UC Regents! 53!

Example Roll: Sweetroll!
 Will use a fictitious roll named

“Sweetroll”!

<?xml version="1.0" standalone="no"?>

<kickstart>
 <description>
The sweet roll.
 <description>
</kickstart>!

© 2006 UC Regents! 54!

Kickstart Nodes!
 Altering Default Nodes!

 Can replace or extend default nodes in Roll!
•  Extend: concatenate extend and default nodes!
•  Replace: overwrite default node!

 Discouraged use: Reserved for end users!
 Extend by name: extend-[node].xml!

•  sweetroll/nodes/extend-compute.xml!

 Replace by name: replace-[node].xml !
•  sweetroll/nodes/replace-compute.xml!

© 2006 UC Regents! 55!

Kickstart Nodes!
 Graph!

  Nodes!
•  Rich language to help with configuration tasks!

•  “Main” section!
•  “Package” section!
•  “Post” section!
•  “Installclass” section!

•  Used to modify Anaconda!

© 2006 UC Regents! 56!

Nodes XML Tools: <var>!
 Get Variables from Database!

  <var name=“Kickstart_PrivateAddress”/>!
  <var name=“Node_Hostname”/>!

 Can grab any value from the app_globals
database table!

10.1.1.1
compute-0-0

© 2006 UC Regents! 57!

<var> values from app_globals!

 Combine “Service” and “Component”!
  For example, Kickstart_PublicAddress!

© 2006 UC Regents! 58!

Nodes XML Tools: <var>!
  <var> attributes!

  name!
•  Required. Format is “Service_Component”!
•  Service and Component relate to column names in the

app_global database table.!
  val!

•  Optional. Sets the value of this variable!
•  <var name=“Info_ClusterName” val=“Seinfeld”/>!

  ref!
•  Optional. Set this variable equal to another!

•  <var name=“Info_Weather” ref=“Info_Forecast”/>!

© 2006 UC Regents! 59!

Nodes XML Tools: <eval>!
 Do processing on the frontend:!

  <eval shell=“bash”>!

 To insert a fortune in the kickstart file:!

"Been through Hell?
Whaddya bring back for
me?"
-- A. Brilliant

<eval shell=“bash”>!
/usr/games/fortune!
</eval>!

© 2006 UC Regents! 60!

Nodes XML Tools: <eval>!
  <eval> attributes!

  shell!
•  Optional. The interpreter to use. Default “sh”!

  mode!
•  Optional. Value is quote or xml. Default of quote specifies for kpp

to escape any XML characters in output.!
•  XML mode allows you to generate other tags:!

•  <eval shell=“python” mode=“xml”>!
•  import time!
•  now = time.time() !
•  print “<var name=ʻInfo_Nowʼ val=ʻ%sʼ/>” % now!

•  </eval>!

© 2006 UC Regents! 61!

Nodes XML Tools: <eval>!
  Inside <eval> variables are not accessed with

<var>: use the environment instead.!

<eval shell=“python”>
import os
print “My NTP time server is”,
 os.environ[‘Kickstart_PublicNTPHost’]
print “Got it?”
</eval>!

My NTP time server is time.apple.com
Got it?

<eval shell=“sh”>
echo “My NTP time server is
$Kickstart_PublicNTPHost”
echo “Got it?”
</eval>!

My NTP time server is time.apple.com
Got it?

© 2006 UC Regents! 62!

Nodes XML Tools <include>!
  Auto-quote XML characters in a file!

  <include file=“foo.py”/>!

  Quotes and includes file!
sweetroll/include/foo.py!

  foo.py (native) ➞ foo.py (quoted xml):!

#!/usr/bin/python

import sys

def hi(s):
 print >> sys.stderr, s!

#!/usr/bin/python

import sys

def hi(s):
 print >> sys.stderr, s

© 2006 UC Regents! 63!

Nodes XML Tools: <include>!
 <include> attributes!

 file!
•  Required. The file to include (relative to

“include/”) dir in roll src.!
 mode!

•  Optional. Value is quote or xml. Default of quote
specifies for kpp to escape any XML characters
in file.!

•  <include file=“my-favorite-things” mode=“quote”/>!

© 2006 UC Regents! 64!

Nodes XML Tools <file>!
  Create a file on the system:!

  <file name=“/etc/hi-mom” mode=“append”>!
•  How are you today?!

  </file>!

  Used extensively throughout Rocks post sections!
  Keeps track of alterations automatically via RCS.!

<file name=“/etc/hi” perms=“444”>
How are you today?
I am fine.
</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’
How are you today?
I am fine.
EOF
chmod 444 /etc/hi-mom
…RCS cleanup commands…

© 2006 UC Regents! 65!

Nodes XML Tools: <file>!
  <file> attributes!

  name!
•  Required. The full path of the file to write.!

  mode!
•  Optional. Value is “create” or “append”. Default is create.!

  owner!
•  Optional. Value is “user.group”, can be numbers or names.!

•  <file name=“/etc/hi” owner=“daemon.root”>!
  perms!

•  Optional. The permissions of the file. Can be any valid “chmod” string.!
•  <file name=“/etc/hi” perms=“a+x”>!

© 2006 UC Regents! 66!

Nodes XML Tools: <file>!
  <file> attributes (continued)!

  vars!
•  Optional. Value is “literal” or “expanded”. In literal (default), no

variables or backticks in file contents are processed. In
expanded, they work normally.!

•  <file name=“/etc/hi” vars=“expanded”>!
•  The current date is `date`!

•  </file> !
  expr!

•  Optional. Specifies a command (run on the frontend)
whose output is placed in the file.!

•  <file name=“/etc/hi” expr=“/opt/rocks/dbreport hi”/>!

© 2006 UC Regents! 67!

Fancy <file>: nested tags!

<file name=“/etc/hi”>

Here is your fortune for today:
<eval>
date +”%d-%b-%Y”
echo “”
/usr/games/fortune
</eval>

</file>!

…RCS checkin commands...
cat > /etc/hi << ‘EOF’

Here is your fortune for today:
13-May-2005

"Been through Hell? Whaddya
bring back for me?"
-- A. Brilliant

EOF
…RCS cleanup commands…

© 2006 UC Regents! 68!

Nodes Main!
  Used to specify basic configuration:!

  timezone!
  mouse, keyboard types !
  install language!

  Used more rarely than other tags!
  Rocks main tags are usually a straight translation: !

<main>

 <timezone>America/Mission_Beach
 </timezone>

</main>!

…
timezone America/Mission_Beach
…
rootpw --iscrypted sndk48shdlwis
mouse genericps/2
url --url http://10.1.1.1/install/rocks-dist/..

© 2006 UC Regents! 69!

Nodes Main: Partitioning!
  <main> !

  <part> / --size 8000 --ondisk hda </part> !
  <part> swap --size 1000 --ondisk hda </part> !
  <part> /mydata --size 1 --grow --ondisk hda </
part>!

  </main>!

part / --size 8000 --ondisk hda !
part swap --size 1000 --ondisk hda !
part /mydata --size 1 --grow --ondisk hda !

© 2006 UC Regents! 70!

Nodes Packages!
  <package>java</package> !

  Specifies an RPM package. Version is automatically determined: take
the newest rpm on the system with the name ʻjavaʼ.!

  <package arch=“x86_64”>java</package>!
  Only install this package on x86_64 architectures!

  <package arch=“i386,x86_64”>java</package>!

<package>newcastle</package>
<package>stone-pale</package>
<package>guinness</package>!

%packages
newcastle
stone-pale
guinness

© 2006 UC Regents! 71!

Nodes Packages!
 RPMS are installed brute-force: no dependancy

checking, always --force!

© 2006 UC Regents! 72!

Nodes Packages!
 RPM name is a basename (not fullname of

RPM)!
  For example, RPM name of package below is ʻkernelʼ!
rpm -qip /home/install/rocks-dist/lan/i386/RedHat/RPMS/kernel-2.6.9-22.EL.i686.rpm
Name : kernel Relocations: (not relocatable)
Version : 2.6.9 Vendor: CentOS
Release : 22.EL Build Date: Sun 09 Oct 2005 03:01:51 AM WET
Install Date: (not installed) Build Host: louisa.home.local
Group : System Environment/Kernel Source RPM: kernel-2.6.9-22.EL.src.rpm
Size : 25589794 License: GPLv2
Signature : DSA/SHA1, Sun 09 Oct 2005 10:44:40 AM WET, Key ID a53d0bab443e1821
Packager : Johnny Hughes <johnny@centos.org>
Summary : the linux kernel (the core of the linux operating system)
Description :
The kernel package contains the Linux kernel (vmlinuz), the core of any
Linux operating system

© 2006 UC Regents! 73!

Nodes Post!
 <post> for Post-Install configuration scripts!
 Configuration scripts in <post> section run after

all RPMs have been installed. !
  Useful: you have all your software available!
  Scripts run in “target” environment: /etc in <post> will

be /etc on the final installed system!

 Scripts are always non-interactive!
  No Human is driving!

© 2006 UC Regents! 74!

Nodes Post!

<post>

/bin/mkdir -p /etc/ntp
/usr/sbin/ntpdate <var name="Kickstart_PrivateNTPHost"/>
/sbin/hwclock --systohc

</post>

%post

/bin/mkdir -p /etc/ntp
/usr/sbin/ntpdate 10.1.1.1
/sbin/hwclock --systohc

ntp-client.xml

© 2006 UC Regents! 75!

Nodes Post Section !
  Scripts have minimal $PATH (/bin, /usr/bin)!
  Error reporting is minimal !

  Write to personal log file if you need debugging!

  Not all services are up. Network is however.!
  Order tag is useful to place yourself favorably relative to other

services!

  Can have multiple <post> sections in a single node!

© 2006 UC Regents! 76!

Nodes XML Tools: <post>!
  <post> attributes!

  arch!
•  Optional. Specifies which architectures to apply package. !

  arg!
•  Optional. Anaconda arguments to %post!

•  --nochroot (rare): operate script in install environment,
not target disk.!

•  --interpreter: specifies script language!

•  <post arg=“--nochroot --interpreter /usr/bin/python”>!

© 2006 UC Regents! 77!

Post Example: PXE config!
<post arch=“x86_64,i386”>
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

<file name=“/tftpboot/pxe../default”>
default ks
prompt 0
label ks

 kernel vmlinuz
 append ks inird=initrd.img……

</file>
</post>

<post arch=“ia64”>

<!-- Itaniums do PXE differently -->
…

</post>!

cat >> /root/install.log << 'EOF'
./nodes/pxe.xml: begin post section
EOF
mkdir -p /tftpboot/pxelinux/pxelinux.cfg

…RCS…
cat > /tftpboot/pxe../default << EOF
default ks
prompt 0
…
EOF
..RCS…

for an x86_64 machine:

© 2006 UC Regents! 78!

A Real Node file: ssh!
<kickstart>

 <description>
 Enable SSH
 </description>

 <package>openssh/package>
 <package>openssh-clients</package>
 <package>openssh-server</package>
 <package>openssh-askpass</package>

<post>

<file name="/etc/ssh/ssh_config">
Host *
 CheckHostIP no
 ForwardX11 yes
 ForwardAgent yes
 StrictHostKeyChecking no
 UsePrivilegedPort no
 FallBackToRsh no
 Protocol 1,2
</file>

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>

© 2006 UC Regents! 79!

Graph Edges!
  <edge>!
  Specifies membership in a kickstart file!

•  To make a kickstart file for a compute node type: !
1.  Take contents of “compute” xml node!
2.  Follow all outgoing edges from “compute”!
3.  Take all contents of child node!
4.  Follow all its outgoing edges, etc, etc, etc!

  Edges between nodes listed in a “graph” file!
•  sweetroll/graphs/default/sweetroll.xml!

  All graph files concatenated together!

© 2006 UC Regents! 80!

Graph Edges: <edge>!
  <edge> attributes!

  from!
•  Required. The name of a node at end of the edge!

•  <edge from=“base” to=“autofs”/> !
  to!

•  Required. The name of a node at the head of an edge!
  arch!

•  Optional. Which architecture should follow this edge. Default is
all.!

  gen!
•  Optional. Which generator should follow this edge. Default is

“kgen”!

© 2006 UC Regents! 81!

Graph Edges!
 <edge from=“security-server” to=“central”/>!

<edge from=“client”>!
<to arch=“i386,x86_64”>grub-client</to>!
<to>autofs-client</to>!
<to>installclass-client</to>!

</edge>!

© 2006 UC Regents! 82!

Graph Ordering!
  Added recently to give us control over when node <post>

sections are run!
•  <order head="database">!

•  <tail>database-schema</tail>!
•  </order>!

  database node appears before database-schema in all kickstart
files.!

  Special HEAD and TAIL nodes represent “first” and “last” (post sections
that you want to run first/last)!

•  <order head=“installclass” tail=“HEAD”/> !BEFORE HEAD!

•  <order head=“TAIL” tail=“postshell”/> !AFTER TAIL!

© 2006 UC Regents! 83!

Graph Ordering: <order>!
  <order> attributes!

  head!
•  Required. The name of a node whose <post> section will appear

BEFORE in the kickstart file.!
  tail!

•  Required. The name of a node whose <post> section will appear AFTER
in the kickstart file.!

•  <order head=“grub” tail=“grub-server”/>!
  arch!

•  Optional. Which architecture should follow this edge. Default is all.!
  gen!

•  Optional. Which generator should follow this edge. Default is “kgen”!

© 2006 UC Regents! 84!

When Things Go Wrong!
 Test your Kickstart Graph!

  Check XML syntax: xmllint!
  Make a kickstart file!

•  Make kickstart file as a node will see it!

  Low level functionality test: kpp!
•  Run the kickstart compilers by hand!

dbreport kickstart compute-0-0 > /tmp/ks.cfg

© 2006 UC Regents! 85!

When Things Go Wrong!
  Test your Kickstart Graph !

  Check XML syntax: xmllint!
•  # cd sweetroll/nodes!
•  # xmllint --noout sweetroll.xml!

<?xml version="1.0" standalone="no"?>

<kickstart>
 <description>
The sweet roll. This roll is just sweet!
 <description>
</kickstart>!

xmllint --noout sweetroll.xml!

sweetroll.xml:7: parser error : Opening and
ending tag mismatch: description line 6 and
kickstart
</kickstart>
 ^

© 2006 UC Regents! 86!

When Things Go Wrong!
  Test your Kickstart Graph!

  Make a kickstart file!

  First, install Sweetroll “on-the-fly”:!
•  # make roll; mount -o loop sweetroll-*.iso /mnt/cdrom!
•  # rocks-dist copyroll; umount /mnt/cdrom!
•  # cd /home/install; rocks-dist dist!
•  # kroll sweetroll > /tmp/install-sweetroll.sh!
•  # sh /tmp/install-sweetroll.sh!

© 2006 UC Regents! 87!

When Things Go Wrong!
  Test your Kickstart Graph!

  With Sweetroll XML in place:!

  Open /tmp/ks.cfg and look for the section:!

  (We do this 10 times a day during release phase)!
  Exactly the same as what a compute node actually sees during

installation!

cat >> /root/install.log << 'EOF'!
./nodes/sweetroll.xml: begin post section

dbreport kickstart compute-0-0 > /tmp/ks.cfg

© 2006 UC Regents! 88!

When Things Go Wrong!
  Test your Kickstart Graph!

  Low level functionality test: kpp!
•  Run the kickstart compilers by hand!

•  For more difficult to diagnose problems!
  KPP is Kickstart Pre Processor: runs <eval>, <var>!
  KGEN is generator: turns XML into kickstart!

•  # cd /home/install/rocks-dist/lan/x86_64/build!
•  # kpp sweetroll!
•  # kpp sweetroll | kgen!

© 2006 UC Regents! 89!

RPM Building!

© 2006 UC Regents! 90!

Building an RPM!
 Generic RPMs are built with ʻspecʼ file

and ʻrpmbuildʼ!
 It takes time to learn how to write a spec

file!
 Can use Rocks development source tree

to create RPMs without having to make a
spec file!

© 2006 UC Regents! 91!

Building an RPM!
 Weʼll do the full procedure in the ʻCluster

Management and Maintenance Labʼ!
 Short story!

  Checkout rocks development source tree!
  Make a new roll from a ʻtemplateʼ roll!
  Download the source tarball!
  Update a description file (version.mk)!
  Execute: make rpm!

•  Assumes tarball adheres to ʻconfigure, make, make installʼ!

© 2006 UC Regents! 92!

Loader Modifications!

© 2006 UC Regents! 93!

Loader Modifications!
 The first program that runs during a

RedHat install is a C program called
“loader”!

 Performs low-level setup!
 Loads drivers !
 Configures network!
 Downloads anaconda!
 Gets kickstart file!

© 2006 UC Regents! 94!

Loader Modifications!
 Make HTTP the default install method!

 RedHat uses NFS as default!

 Rationale!
 Installation is read-only, donʼt need a file

system!
 HTTP traffic can be easily load balanced!
 Peer-to-peer networks use HTTP!

© 2006 UC Regents! 95!

Loader Modifications!
  Robust kickstart file acquistion!

  10 retries to get kickstart file!
•  RedHat has only 1!

  NACK to throttle kickstart file acquistion!
•  When load on frontend is high, the compute node is told to wait

before next retry!

  Rationale!
  The kickstart file is everything -- without it, a node is just a

$2,000 paperweight!
  NACK feature is for supporting large cluster reinstallations!

© 2006 UC Regents! 96!

Loader Modifications!
 Watchdog!

  If canʼt get kickstart file or if there is an error during
the installation, reboot!

•  This will restart the installation!
•  RedHat just halts!

 Rationale!
  Again, the kickstart file is everything!

© 2006 UC Regents! 97!

Loader Modifications!
 Network-based frontend installations!

  In Rocks lingo: a “central” install!

 Rationale!
  The “CD dance” during installation is not optimal!
  Needed to support grids of clusters from a central

place!
  Huge benefit for development!

•  Donʼt have to burn CDs just to test code changes!

© 2006 UC Regents! 98!

Loader Modifications!
 Secure kickstart!

  Added HTTPS support!

 Rationale!
  Needed for support of network-based frontend

installations (“central” installs)!
•  Donʼt want the root password for the frontend sent over the

network in the clear!!
  Useful for compute nodes that are installed over a

public network!

© 2006 UC Regents! 99!

Loader Modifications!
 Support adding compute node to any ethernet

interface!
  The first interface that receives a kickstart file, is

anointed ʻeth0ʼ!

 Rationale!
  Email reduction!

•  We got lots of email from people who plugged their ethernet
cable into the “wrong” port!

  Even the Three Stooges can plug in the cables to the
compute nodes!!

© 2006 UC Regents! 100!

Loader Modifications!
 Bug Fixes!

  Added support for multiple CD drives!
  A couple stack overflow problems!

 Rationale!
  Without the fixes, the installer halts!

