
© 2006 UC Regents! 1!

Introduction to Rocks!

Rocks-A-Palooza II!

© 2006 UC Regents! 2!

Overview of Rocks!

The Rocks software
stack!

© 2006 UC Regents! 3!

Cluster Software Stack!

© 2006 UC Regents! 4!

Common to Any Cluster!

© 2006 UC Regents! 5!

Red Hat!
  Enterprise Linux 4.0!

  Recompiled from public SRPMS, including errata updates (source code)!
  No license fee required, redistribution is also fine!
  Recompiled for all CPU types (x86, Opteron, Itanium)!
  Rocks 5.0 will be based on RHEL 5.0 (Centos, or RHEL)!

  Standard Red Hat Linux kernel!
  No Rocks added kernel patches!

  No support for other distributions!
  Red Hat is the market leader for Linux!

•  In the US!
•  And becoming so in Europe!

  Trivial to support any Anaconda-based system!
  Others would be harder, and require vendor support (SuSe ~ 12 months work)!

  Excellent support for automated installation!
  Scriptable installation (Kickstart)!
  Very good hardware detection!

© 2006 UC Regents! 6!

Dell Invests in Red Hat!

© 2006 UC Regents! 7!

Batch Systems!
  Portable Batch System and Maui!

  Long time standard for HPC queuing systems!
  Maui provides backfilling for high throughput!
  PBS/Maui system can be fragile and unstable!
  Multiple code bases:!

•  PBS!
•  OpenPBS!
•  PBSPro!
•  Scalable PBS!

  Sun Grid Engine!
  Rapidly becoming the new standard!
  Integrated into Rocks by Scalable Systems!

•  See Najib!
  Now the default scheduler for Rocks!
  Robust and dynamic!

© 2006 UC Regents! 8!

Communication Layer!
  None!

  “Embarrassingly Parallel”!
  Sockets!

  Client-Server model!
  Point-to-point communication!

  MPI - Message Passing Interface!
  Message Passing!
  Static model of participants!

  PVM - Parallel Virtual Machines!
  Message Passing!
  For Heterogeneous architectures!
  Resource Control and Fault Tolerance!

© 2006 UC Regents! 9!

Sockets are low level!
  Sockets!

  Point-to-Point!
  N machines = (n^2 - n)/2

connections!
  1, 3, 6, 10, 15, …!

  MPI/PVM!
  Shared virtual channel!
  Implementation could be sockets!
  Easier to program!

© 2006 UC Regents! 10!

Sockets!
  Open an endpoint!
  Specify IP address and port!
  Send / receive messages!

  If TCP, only point-to-point
messages!

  If UDP, option of point-to-point
or multicast (broadcast)!

  Shutdown connection!

client	

 server	

© 2006 UC Regents! 11!

High-level TCP Example!

© 2006 UC Regents! 12!

Challenges with Sockets!
 TCP!

 Reliable, but byte oriented!
 Need to write code to send and receive

packets (at the application level)!
 UDP!

 Unreliable!
 Need to write code to reliably send packets!

© 2006 UC Regents! 13!

MPI!
  Message Passing Interface!
  De facto standard for message passing!

  Runs over many CPU architectures and many communication
substrates!

  There are (and were) lots of good messaging libraries!
  But, MPI is the most pervasive!
  Developed a practical, portable, efficient and flexible standard!
  In development since 1992!

© 2006 UC Regents! 14!

MPI!
 Explicitly move data like sockets, but virtualizes

the endpoints!
  Remote endpoints addressed by integer 0, 1, …, n!

 Primitives to support point-to-point and
broadcast!

Process 0	

 Process 1	

 Process 2	

 Process 3	

© 2006 UC Regents! 15!

MPI!
 Single interface to pass messages over

many communication substrates!

Ethernet	

 Myrinet	

 IB	

 Dolphin	

MPI API	

© 2006 UC Regents! 16!

High-level MPI Example!

© 2006 UC Regents! 17!

Challenges with MPI!
 If a node fails, no easy way to reconfigure

and route around the problem!
 Basically, your program stops!

© 2006 UC Regents! 18!

Compile!

  MPICH with GNU Compilers and Ethernet!
Compiler !Path ! ! ! ! !!
C: ! ! !/opt/mpich/ethernet/gcc/bin/mpicc!
C++: ! !/opt/mpich/ethernet/gcc/bin/mpiCC!
F77: ! !/opt/mpich/ethernet/gcc/bin/mpif77!

  MPICH with GNU Compilers and Myrinet!
Compiler !Path!
C: ! ! !/opt/mpich/myrinet/gcc/bin/mpicc!
C++: ! !/opt/mpich/myrinet/gcc/bin/mpiCC!
F77: ! !/opt/mpich/myrinet/g77/bin/mpif77!

© 2006 UC Regents! 19!

Compile!
  MPICH with Intel Compilers and Ethernet!
Compiler !Path ! ! ! ! !!
C: ! ! !/opt/mpich/ethernet/ecc/mpicc!

C++:! ! !/opt/mpich/ethernet/ecc/mpiCC!
F77:! ! !/opt/mpich/ethernet/ecc/mpif77!
F90:! ! !/opt/mpich/ethernet/ecc/mpif90!

  MPICH with Intel Compilers and Myrinet!
Compiler !Path!
C: ! ! !/opt/mpich/myrinet/ecc/mpicc!

C++:! ! !/opt/mpich/myrinet/ecc/mpiCC!!
F77:! ! !/opt/mpich/myrinet/efc/mpif77!
F90:! ! !/opt/mpich/myrinet/efc/mpif90!

© 2006 UC Regents! 20!

PVM!
 Parallel Virtual Machines v3.4.3!

 Message passing interface for
heterogeneous architectures!
•  Supports over 60 variants of UNIX!
•  Supports Windows NT!

 Resource control and meta computing!
 Fault tolerance!
 http://www.csm.ornl.gov/pvm/!

© 2006 UC Regents! 21!

NFS!
 User account are served over NFS!

  Works for small clusters (<= 128 nodes)!
  Will not work for large clusters (>1024 nodes)!
  NAS is better than Linux!

•  Rocks uses the Frontend machine to server NFS!
•  We have deployed NAS on several clusters!

 Applications are not served over NFS!
  /usr/local/ does not exist!
  All software is installed locally from RPM!

© 2006 UC Regents! 22!

Open SSH!
  Replaces Telnet, Rsh!

  Cryptographically strong authentication and encryption!
  Forwards X11 connections (no more $DISPLAY)!

  Rocks uses SSH!
  Mpirun!
  Cluster-fork!

  Ssh-agent!
  Manager for SSH keys!
  ssh-agent $SHELL!

© 2006 UC Regents! 23!

Rocks Cluster Software!

© 2006 UC Regents! 24!

SNMP!
 Enabled on all compute nodes!
 Great for point-to-point use!

 Good for high detail on a single end-point!
 Does not scale to full cluster wide use!

 Supports Linux MIB!
 Uptime, Load, Network statistics!
 Install Software!
 Running Processes!

© 2006 UC Regents! 25!

Syslog!
  Native UNIX system event logger!

  Logs events to local dist!
•  /var/log/message!
•  Rotates logs daily, eventually historic data is lost!

  Forwards all message to the frontend!
  Scalable!

  Can add additional loghosts!
  Can throttle verbosity of loggers!

  Uses!
  Predicting hardware and software failures!
  Post Mortem on crashed nodes!
  Debugging System startup!

© 2006 UC Regents! 26!

eKV!
 Remotely Interact with Installation!

 Initial kickstart!
 Re-Installation!

 Shoot-node!
 Reinstall OS and brings up eKV!

 eKV!
 Ssh to node while it is installing!
 See the console output over Ethernet!

© 2006 UC Regents! 27!

Cluster State Management!
 Static Information!

  Node addresses!
  Node types!
  Site-specific

configuration!
 Dynamic Information!

  CPU utilization!
  Disk utilization!
  Which nodes are

online!

© 2006 UC Regents! 28!

Cluster Database!

© 2006 UC Regents! 29!

Node Info Stored In A MySQL
Database!

  If you know SQL, you can execute
powerful commands!
  Rocks-supplied command line utilities are

tied into the database!

  E.g., get the hostname for the bottom 8
nodes of each cabinet:!

cluster-fork --query="select name from nodes where rank<8" hostname

© 2006 UC Regents! 30!

Ganglia (or SCMSWeb / SCE
Roll)!

  Scalable cluster monitoring system!
  Based on ip multi-cast!
  Matt Massie, et al from UCB!
  http://ganglia.sourceforge.net!

  Gmon daemon on every node!
  Multicasts system state!
  Listens to other daemons!
  All data is represented in XML!

  Ganglia command line!
  Python code to parse XML to English!

  Gmetric!
  Extends Ganglia!
  Command line to multicast single metrics!

© 2006 UC Regents! 31!

Ganglia Screenshot!

© 2006 UC Regents! 32!

SCMSWeb Screenshot!

© 2006 UC Regents! 33!

Software Installation!

Collection of all possible
software packages
(AKA Distribution)

Descriptive information to
configure a node

Compute Node

Kickstart
 file

RPMs

IO Server Web Server

A
ppliances

© 2006 UC Regents! 34!

Software Repository!

Descriptive information to
configure a node

Compute Node

Kickstart
 file

IO Server Web Server

A
ppliances

Collection of all possible
software packages
(AKA Distribution)

RPMs

© 2006 UC Regents! 35!

Collection of all possible
software packages
(AKA Distribution)

RPMs

Installation Instructions!

Compute Node IO Server Web Server

A
ppliances

Kickstart
 file

Descriptive information to
configure a node

© 2006 UC Regents! 36!

Cluster Software Management!
Software Packages!
 RPMs!

  Standard Red Hat
(desktop) packaged
software!

  Or your own addons!
 Rocks-dist!

  Manages the RPM
repository!

  This is the distribution !

Software Configuration!
 Tuning RPMs!

  For clusters!
  For your site!
  Other customization!

 XML Kickstart!
  Programmatic System

Building!
  Scalable!

© 2006 UC Regents! 37!

Building a Rocks Distribution!

  Start with Red Hat!
  Add updates, Rocks (and optional other) software!
  Add Kickstart profiles!
  Modify Red Hat installation boot image!
  Resulting in a Red Hat compatible Rocks distribution!

© 2006 UC Regents! 38!

Kickstart!
  Red Hatʼs Kickstart!

  Monolithic flat ASCII file!
  No macro language!
  Requires forking based on site

information and node type.!
  Rocks XML Kickstart!

  Decompose a kickstart file into nodes
and a graph!

•  Graph specifies OO framework!
•  Each node specifies a service and its

configuration!
  Macros and SQL for site configuration!
  Driven from web cgi script!

© 2006 UC Regents! 39!

Kickstart File Sections!
  Main!

  Disk partitioning!
  Root password!
  RPM repository URL!
  …!

  Packages!
  List of RPMs (w/o version numbers)!
  The repository determines the RPM versions!
  The kickstart file determines the set of RPMs!

  Pre!
  Shell scripts run before RPMs are installed!
  Rarely used (Rocks uses it to enhance kickstart)!

  Post!
  Shell scripts to cleanup RPM installation!
  Fixes bugs in packages!
  Adds local information!

© 2006 UC Regents! 40!

Sample Node File!
<?xml version="1.0" standalone="no"?>	
<!DOCTYPE kickstart SYSTEM "@KICKSTART_DTD@" [<!ENTITY ssh "openssh">]>	
<kickstart>	

	<description>	
	Enable SSH	
	</description>	

	<package>&ssh;</package>	
	<package>&ssh;-clients</package>	
	<package>&ssh;-server</package>	
	<package>&ssh;-askpass</package>	

<post>	

cat > /etc/ssh/ssh_config << 'EOF’ <!-- default client setup -->	
Host *	
 ForwardX11 yes	
 ForwardAgent yes	
EOF	

chmod o+rx /root	
mkdir /root/.ssh	
chmod o+rx /root/.ssh	

</post>	
</kickstart>>	

© 2006 UC Regents! 41!

Sample Graph File!
<?xml version="1.0" standalone="no"?>	

<graph>	
	<description>	
	Default Graph for NPACI Rocks.	
	</description>	

	<edge from="base" to="scripting"/>	
	<edge from="base" to="ssh"/>	
	<edge from="base" to="ssl"/>	
	<edge from="base" to=”grub" arch="i386"/>	
	<edge from="base" to="elilo" arch="ia64"/>	
	 	…	
	<edge from="node" to="base"/>	
	<edge from="node" to="accounting"/>	
	<edge from="slave-node" to="node"/>	
	<edge from="slave-node" to="nis-client"/>	

 	<edge from="slave-node" to="autofs-client"/>	
 	<edge from="slave-node" to="dhcp-client"/>	
 	<edge from="slave-node" to="snmp-server"/>	
 	<edge from="slave-node" to="node-certs"/>	
 	<edge from="compute" to="slave-node"/>	
 	<edge from="compute" to="usher-server"/>	
 	<edge from="master-node" to="node"/>	
 	<edge from="master-node" to="x11"/>	
 	<edge from="master-node" to="usher-client"/>	
</graph>	

© 2006 UC Regents! 42!

Kickstart Framework!

© 2006 UC Regents! 43!

Appliances!
  Laptop / Desktop!

  Appliances!
  Final classes!
  Node types!

  Desktop IsA!
  standalone!

  Laptop IsA!
  standalone!
  pcmcia!

  Code re-use is good!

© 2006 UC Regents! 44!

Architecture Differences!
  Conditional inheritance!
  Annotate edges with target

architectures!
  if i386!

  Base IsA grub!
  if ia64!

  Base IsA elilo!
  One Graph, Many CPUs!

  Heterogeneity is easy!
  Not true for SSI or Imaging!

© 2006 UC Regents! 45!

Optional Drivers!
  PVFS!

  Parallel Virtual File System!
  Kernel module built for all nodes!
  User must decide to enable!

  Myrinet!
  High Speed and Low Latency Interconnect!
  GM/MPI for user Applications!
  Kernel module built for all nodes with Myrinet cards!

  Add your own!
  Cluster Gigabit Ethernet driver!
  Infiniband driver!

© 2006 UC Regents! 46!

Application Layer!

  Rocks Rolls!
  Optional component!
  Created by SDSC!
  Created by others!

  Example!
  Bio (BLAST)!
  Chem (GAMESS)!
  Visualization Clusters!

© 2006 UC Regents! 47!

Building on Top of Rocks!

Inheritance and Rolls!

© 2006 UC Regents! 48!

How Rocks in built!
  Rocks-dist!

  Merges all RPMs!
•  Red Hat!
•  Rocks!

  Resolves versions!
  Creates Rocks!

  Rocks distribution!
  Looks just like Red Hat!
  Cluster optimized Red Hat!

© 2006 UC Regents! 49!

How You Create Your Own
Rocks!
 Rocks-dist!

  Merges all RPMs!
•  Rocks!
•  Yours!

  Resolves versions!
  Creates Rocks++!

 Your distribution!
  Looks just like Rocks!
  Application optimized

Rocks!

© 2006 UC Regents! 50!

Extension Through Inheritance!
  UCSD/SDSC Rocks!

  BIRN!
  GAMESS Portal!
  GEON!
  GriPhyN!
  Camera!
  Optiputer!

  Commercial!
  Scalable Systems!
  Platform Computing!

  Can also override existing
functionality!
  Rocks without NFS?!
  Rocks for the desktop?!

© 2006 UC Regents! 51!

Rolls!

 Think of a roll as a “package” for a car!

© 2006 UC Regents! 52!

Rolls Break Apart Rocks!

© 2006 UC Regents! 53!

Rocks is What You Make it!
  Motivation!

  “Iʼm concerned Rocks is becoming everything for everyone” - rocks mailing list!
  “Building a cluster should be like ordering a car. I want the sports package, but not the leather seats, …” - z4 owning rocks

developer!
  We need to let go of Rocks but hold onto the core!

•  Recruit more external open-source developers!
•  Only trust ourselves with fundamental architecture and implementation!

  We wanted to move the SGE but need to still support PBS!
  Rolls!

  Optional configuration and software!
  Just another CD for installed (think application pack)!
  SGE and PBS are different Rolls!

•  User chooses scheduler!
•  PBS Roll supported by Norway!
•  SGE Roll supported by Singapore (and us)!

  Rolls give us more flexibility and less work!
  Rocks is done!

  The core is basically stable and needs continued support!
  Rolls allow us to develop new ideas!
  Application Domain specific!

  IEEE Cluster 2004 - “Rolls: Modifying a Standard System Installer to Support User-Customizable Cluster
Frontend Appliances”!

© 2006 UC Regents! 54!

Extensible Rocks!
  Over a dozen Rolls already created (e. g.)!

  SGE, PBS!
  Grid (NMI stack)!
  Java!
  Condor!
  SCE!

  Several third party Rolls have started!
  Quadrics (rumored)!
  PGI (just Released)!
  NIMROD!
  BIRN!
  DB2!

  Rocks is done!
  The core is basically stable and needs continued support!
  Rolls allow us to develop new ideas!
  Application Domain specific!
  For example: Visualization…!

© 2006 UC Regents! 55!

Viz Roll!

Rocks becomes more
than just compute
clusters!

© 2006 UC Regents! 56!

Early Work: NCSA!
  LCD Cluster!

  Custom framing!
  One PC / tile!
  Portable (luggable)!
  SC 2001 Demo!

  NCSA Software!
  Pixel Blaster!
  Display Wall In-A-Box!
  OSCAR based!
  Never fully released!

© 2006 UC Regents! 57!

NCMIR!

 Using Rocks!
 Hand configured a

visualization cluster!
  “Administered the

machine to the point
of instability” - David
Lee!

 Automation is needed!

© 2006 UC Regents! 58!

COTS Vis: GeoWall!
  LCD Clusters!

  One PC / tile!
  Gigabit Ethernet!
  Optional Stereo Glasses!
  Portable!
  Commercial Frame (Reason)!

  Applications!
  Large remote sensing!
  Volume Rendering!
  Seismic Interpretation!
  Brain mapping (NCMIR)!

  Electronic Visualization Lab!
  Jason Leigh (UIC)!

© 2006 UC Regents! 59!

Eye Candy (NCMIR)!

© 2006 UC Regents! 60!

Rocks Installation!

Step by step instruction
for building your cluster!

© 2006 UC Regents! 61!

Frontend Installation!
 Turn on node!
  Insert CDROM!
 Type!

  frontend!

© 2006 UC Regents! 62!

Rolls!
 Anaconda Starts!
 Asks for Rolls!
 Select “Yes”!
  Insert!

  base!
  hpc+kernel!
  area51+java+grid+sge!

© 2006 UC Regents! 63!

Cluster Information!
 Specific to Rocks!
 Used for Certificates!

  SSL/HTTPS!
  Globus!

 Hostname!
  Must be FQDN!
  Must be in DNS!
  Must not be an Alias!

© 2006 UC Regents! 64!

Partitioning!
 Automatic!

  6GB /!
  1GB swap!
  Remainder for /export!

 Manual!
  You choose!
  Must create a /export!

 Select Wisely!

© 2006 UC Regents! 65!

Networks!
 Private Network!

  eth0!
  Cluster-side only!

 Public Network!
  eth1!
  Internet/LAN side!

 You must configure
both and have 2 NICs!

© 2006 UC Regents! 66!

Gateway!
  Gateway / DNS!

  Same as any other device on
you network!

  All traffic for compute nodes is
NATed through the frontend.!

  DNS is only for the frontend,
compute nodes use the
frontend as their DNS.!

© 2006 UC Regents! 67!

Network Time Protocol!
 Choose timezone!

  UTC is a good choice!
  Or localize!

 Default server is!
  time.apple.com!
  Change it if you wish!

© 2006 UC Regents! 68!

Root Password!
 Password is secure!

  Not stored in clear text
form anywhere (not in
DB)!

 Also used for mysql
password!

© 2006 UC Regents! 69!

Installing Packages!

© 2006 UC Regents! 70!

Integrate Compute Nodes!
  Log into Frontend (as root)!
  Run insert-ethers!

  Can choose appliance type!
  Rolls add new appliance types!
  For now we will use Compute!

  Turn on first node!
  Nodes are integrated serially!
  Need to map machine name to

machine location!
  After we integrate machines can

be re-installed in parallel!
  Remote Terminal (ekv)!

  ssh compute-0-0 -p2200!

© 2006 UC Regents! 71!

Discovering Compute-0-0!

Retrieved kickstart file

© 2006 UC Regents! 72!

useradd!

© 2006 UC Regents! 73!

user login!

© 2006 UC Regents! 74!

End!

