
© 2006 UC Regents! 1!

Introduction to Rocks!

Rocks-A-Palooza II!

© 2006 UC Regents! 2!

Overview of Rocks!

The Rocks software
stack!

© 2006 UC Regents! 3!

Cluster Software Stack!

© 2006 UC Regents! 4!

Common to Any Cluster!

© 2006 UC Regents! 5!

Red Hat!
  Enterprise Linux 4.0!

  Recompiled from public SRPMS, including errata updates (source code)!
  No license fee required, redistribution is also fine!
  Recompiled for all CPU types (x86, Opteron, Itanium)!
  Rocks 5.0 will be based on RHEL 5.0 (Centos, or RHEL)!

  Standard Red Hat Linux kernel!
  No Rocks added kernel patches!

  No support for other distributions!
  Red Hat is the market leader for Linux!

•  In the US!
•  And becoming so in Europe!

  Trivial to support any Anaconda-based system!
  Others would be harder, and require vendor support (SuSe ~ 12 months work)!

  Excellent support for automated installation!
  Scriptable installation (Kickstart)!
  Very good hardware detection!

© 2006 UC Regents! 6!

Dell Invests in Red Hat!

© 2006 UC Regents! 7!

Batch Systems!
  Portable Batch System and Maui!

  Long time standard for HPC queuing systems!
  Maui provides backfilling for high throughput!
  PBS/Maui system can be fragile and unstable!
  Multiple code bases:!

•  PBS!
•  OpenPBS!
•  PBSPro!
•  Scalable PBS!

  Sun Grid Engine!
  Rapidly becoming the new standard!
  Integrated into Rocks by Scalable Systems!

•  See Najib!
  Now the default scheduler for Rocks!
  Robust and dynamic!

© 2006 UC Regents! 8!

Communication Layer!
  None!

  “Embarrassingly Parallel”!
  Sockets!

  Client-Server model!
  Point-to-point communication!

  MPI - Message Passing Interface!
  Message Passing!
  Static model of participants!

  PVM - Parallel Virtual Machines!
  Message Passing!
  For Heterogeneous architectures!
  Resource Control and Fault Tolerance!

© 2006 UC Regents! 9!

Sockets are low level!
  Sockets!

  Point-to-Point!
  N machines = (n^2 - n)/2

connections!
  1, 3, 6, 10, 15, …!

  MPI/PVM!
  Shared virtual channel!
  Implementation could be sockets!
  Easier to program!

© 2006 UC Regents! 10!

Sockets!
  Open an endpoint!
  Specify IP address and port!
  Send / receive messages!

  If TCP, only point-to-point
messages!

  If UDP, option of point-to-point
or multicast (broadcast)!

  Shutdown connection!

client	
 server	

© 2006 UC Regents! 11!

High-level TCP Example!

© 2006 UC Regents! 12!

Challenges with Sockets!
 TCP!

 Reliable, but byte oriented!
 Need to write code to send and receive

packets (at the application level)!
 UDP!

 Unreliable!
 Need to write code to reliably send packets!

© 2006 UC Regents! 13!

MPI!
  Message Passing Interface!
  De facto standard for message passing!

  Runs over many CPU architectures and many communication
substrates!

  There are (and were) lots of good messaging libraries!
  But, MPI is the most pervasive!
  Developed a practical, portable, efficient and flexible standard!
  In development since 1992!

© 2006 UC Regents! 14!

MPI!
 Explicitly move data like sockets, but virtualizes

the endpoints!
  Remote endpoints addressed by integer 0, 1, …, n!

 Primitives to support point-to-point and
broadcast!

Process 0	
 Process 1	
 Process 2	
 Process 3	

© 2006 UC Regents! 15!

MPI!
 Single interface to pass messages over

many communication substrates!

Ethernet	
 Myrinet	
 IB	
 Dolphin	

MPI API	

© 2006 UC Regents! 16!

High-level MPI Example!

© 2006 UC Regents! 17!

Challenges with MPI!
 If a node fails, no easy way to reconfigure

and route around the problem!
 Basically, your program stops!

© 2006 UC Regents! 18!

Compile!

  MPICH with GNU Compilers and Ethernet!
Compiler !Path ! ! ! ! !!
C: ! ! !/opt/mpich/ethernet/gcc/bin/mpicc!
C++: ! !/opt/mpich/ethernet/gcc/bin/mpiCC!
F77: ! !/opt/mpich/ethernet/gcc/bin/mpif77!

  MPICH with GNU Compilers and Myrinet!
Compiler !Path!
C: ! ! !/opt/mpich/myrinet/gcc/bin/mpicc!
C++: ! !/opt/mpich/myrinet/gcc/bin/mpiCC!
F77: ! !/opt/mpich/myrinet/g77/bin/mpif77!

© 2006 UC Regents! 19!

Compile!
  MPICH with Intel Compilers and Ethernet!
Compiler !Path ! ! ! ! !!
C: ! ! !/opt/mpich/ethernet/ecc/mpicc!

C++:! ! !/opt/mpich/ethernet/ecc/mpiCC!
F77:! ! !/opt/mpich/ethernet/ecc/mpif77!
F90:! ! !/opt/mpich/ethernet/ecc/mpif90!

  MPICH with Intel Compilers and Myrinet!
Compiler !Path!
C: ! ! !/opt/mpich/myrinet/ecc/mpicc!

C++:! ! !/opt/mpich/myrinet/ecc/mpiCC!!
F77:! ! !/opt/mpich/myrinet/efc/mpif77!
F90:! ! !/opt/mpich/myrinet/efc/mpif90!

© 2006 UC Regents! 20!

PVM!
 Parallel Virtual Machines v3.4.3!

 Message passing interface for
heterogeneous architectures!
•  Supports over 60 variants of UNIX!
•  Supports Windows NT!

 Resource control and meta computing!
 Fault tolerance!
 http://www.csm.ornl.gov/pvm/!

© 2006 UC Regents! 21!

NFS!
 User account are served over NFS!

  Works for small clusters (<= 128 nodes)!
  Will not work for large clusters (>1024 nodes)!
  NAS is better than Linux!

•  Rocks uses the Frontend machine to server NFS!
•  We have deployed NAS on several clusters!

 Applications are not served over NFS!
  /usr/local/ does not exist!
  All software is installed locally from RPM!

© 2006 UC Regents! 22!

Open SSH!
  Replaces Telnet, Rsh!

  Cryptographically strong authentication and encryption!
  Forwards X11 connections (no more $DISPLAY)!

  Rocks uses SSH!
  Mpirun!
  Cluster-fork!

  Ssh-agent!
  Manager for SSH keys!
  ssh-agent $SHELL!

© 2006 UC Regents! 23!

Rocks Cluster Software!

© 2006 UC Regents! 24!

SNMP!
 Enabled on all compute nodes!
 Great for point-to-point use!

 Good for high detail on a single end-point!
 Does not scale to full cluster wide use!

 Supports Linux MIB!
 Uptime, Load, Network statistics!
 Install Software!
 Running Processes!

© 2006 UC Regents! 25!

Syslog!
  Native UNIX system event logger!

  Logs events to local dist!
•  /var/log/message!
•  Rotates logs daily, eventually historic data is lost!

  Forwards all message to the frontend!
  Scalable!

  Can add additional loghosts!
  Can throttle verbosity of loggers!

  Uses!
  Predicting hardware and software failures!
  Post Mortem on crashed nodes!
  Debugging System startup!

© 2006 UC Regents! 26!

eKV!
 Remotely Interact with Installation!

 Initial kickstart!
 Re-Installation!

 Shoot-node!
 Reinstall OS and brings up eKV!

 eKV!
 Ssh to node while it is installing!
 See the console output over Ethernet!

© 2006 UC Regents! 27!

Cluster State Management!
 Static Information!

  Node addresses!
  Node types!
  Site-specific

configuration!
 Dynamic Information!

  CPU utilization!
  Disk utilization!
  Which nodes are

online!

© 2006 UC Regents! 28!

Cluster Database!

© 2006 UC Regents! 29!

Node Info Stored In A MySQL
Database!

  If you know SQL, you can execute
powerful commands!
  Rocks-supplied command line utilities are

tied into the database!

  E.g., get the hostname for the bottom 8
nodes of each cabinet:!

cluster-fork --query="select name from nodes where rank<8" hostname

© 2006 UC Regents! 30!

Ganglia (or SCMSWeb / SCE
Roll)!

  Scalable cluster monitoring system!
  Based on ip multi-cast!
  Matt Massie, et al from UCB!
  http://ganglia.sourceforge.net!

  Gmon daemon on every node!
  Multicasts system state!
  Listens to other daemons!
  All data is represented in XML!

  Ganglia command line!
  Python code to parse XML to English!

  Gmetric!
  Extends Ganglia!
  Command line to multicast single metrics!

© 2006 UC Regents! 31!

Ganglia Screenshot!

© 2006 UC Regents! 32!

SCMSWeb Screenshot!

© 2006 UC Regents! 33!

Software Installation!

Collection of all possible
software packages
(AKA Distribution)

Descriptive information to
configure a node

Compute Node

Kickstart
 file

RPMs

IO Server Web Server

A
ppliances

© 2006 UC Regents! 34!

Software Repository!

Descriptive information to
configure a node

Compute Node

Kickstart
 file

IO Server Web Server

A
ppliances

Collection of all possible
software packages
(AKA Distribution)

RPMs

© 2006 UC Regents! 35!

Collection of all possible
software packages
(AKA Distribution)

RPMs

Installation Instructions!

Compute Node IO Server Web Server

A
ppliances

Kickstart
 file

Descriptive information to
configure a node

© 2006 UC Regents! 36!

Cluster Software Management!
Software Packages!
 RPMs!

  Standard Red Hat
(desktop) packaged
software!

  Or your own addons!
 Rocks-dist!

  Manages the RPM
repository!

  This is the distribution !

Software Configuration!
 Tuning RPMs!

  For clusters!
  For your site!
  Other customization!

 XML Kickstart!
  Programmatic System

Building!
  Scalable!

© 2006 UC Regents! 37!

Building a Rocks Distribution!

  Start with Red Hat!
  Add updates, Rocks (and optional other) software!
  Add Kickstart profiles!
  Modify Red Hat installation boot image!
  Resulting in a Red Hat compatible Rocks distribution!

© 2006 UC Regents! 38!

Kickstart!
  Red Hatʼs Kickstart!

  Monolithic flat ASCII file!
  No macro language!
  Requires forking based on site

information and node type.!
  Rocks XML Kickstart!

  Decompose a kickstart file into nodes
and a graph!

•  Graph specifies OO framework!
•  Each node specifies a service and its

configuration!
  Macros and SQL for site configuration!
  Driven from web cgi script!

© 2006 UC Regents! 39!

Kickstart File Sections!
  Main!

  Disk partitioning!
  Root password!
  RPM repository URL!
  …!

  Packages!
  List of RPMs (w/o version numbers)!
  The repository determines the RPM versions!
  The kickstart file determines the set of RPMs!

  Pre!
  Shell scripts run before RPMs are installed!
  Rarely used (Rocks uses it to enhance kickstart)!

  Post!
  Shell scripts to cleanup RPM installation!
  Fixes bugs in packages!
  Adds local information!

© 2006 UC Regents! 40!

Sample Node File!
<?xml version="1.0" standalone="no"?>	
<!DOCTYPE kickstart SYSTEM "@KICKSTART_DTD@" [<!ENTITY ssh "openssh">]>	
<kickstart>	

	<description>	
	Enable SSH	
	</description>	

	<package>&ssh;</package>	
	<package>&ssh;-clients</package>	
	<package>&ssh;-server</package>	
	<package>&ssh;-askpass</package>	

<post>	

cat > /etc/ssh/ssh_config << 'EOF’ <!-- default client setup -->	
Host *	
 ForwardX11 yes	
 ForwardAgent yes	
EOF	

chmod o+rx /root	
mkdir /root/.ssh	
chmod o+rx /root/.ssh	

</post>	
</kickstart>>	

© 2006 UC Regents! 41!

Sample Graph File!
<?xml version="1.0" standalone="no"?>	

<graph>	
	<description>	
	Default Graph for NPACI Rocks.	
	</description>	

	<edge from="base" to="scripting"/>	
	<edge from="base" to="ssh"/>	
	<edge from="base" to="ssl"/>	
	<edge from="base" to=”grub" arch="i386"/>	
	<edge from="base" to="elilo" arch="ia64"/>	
	 	…	
	<edge from="node" to="base"/>	
	<edge from="node" to="accounting"/>	
	<edge from="slave-node" to="node"/>	
	<edge from="slave-node" to="nis-client"/>	

 	<edge from="slave-node" to="autofs-client"/>	
 	<edge from="slave-node" to="dhcp-client"/>	
 	<edge from="slave-node" to="snmp-server"/>	
 	<edge from="slave-node" to="node-certs"/>	
 	<edge from="compute" to="slave-node"/>	
 	<edge from="compute" to="usher-server"/>	
 	<edge from="master-node" to="node"/>	
 	<edge from="master-node" to="x11"/>	
 	<edge from="master-node" to="usher-client"/>	
</graph>	

© 2006 UC Regents! 42!

Kickstart Framework!

© 2006 UC Regents! 43!

Appliances!
  Laptop / Desktop!

  Appliances!
  Final classes!
  Node types!

  Desktop IsA!
  standalone!

  Laptop IsA!
  standalone!
  pcmcia!

  Code re-use is good!

© 2006 UC Regents! 44!

Architecture Differences!
  Conditional inheritance!
  Annotate edges with target

architectures!
  if i386!

  Base IsA grub!
  if ia64!

  Base IsA elilo!
  One Graph, Many CPUs!

  Heterogeneity is easy!
  Not true for SSI or Imaging!

© 2006 UC Regents! 45!

Optional Drivers!
  PVFS!

  Parallel Virtual File System!
  Kernel module built for all nodes!
  User must decide to enable!

  Myrinet!
  High Speed and Low Latency Interconnect!
  GM/MPI for user Applications!
  Kernel module built for all nodes with Myrinet cards!

  Add your own!
  Cluster Gigabit Ethernet driver!
  Infiniband driver!

© 2006 UC Regents! 46!

Application Layer!

  Rocks Rolls!
  Optional component!
  Created by SDSC!
  Created by others!

  Example!
  Bio (BLAST)!
  Chem (GAMESS)!
  Visualization Clusters!

© 2006 UC Regents! 47!

Building on Top of Rocks!

Inheritance and Rolls!

© 2006 UC Regents! 48!

How Rocks in built!
  Rocks-dist!

  Merges all RPMs!
•  Red Hat!
•  Rocks!

  Resolves versions!
  Creates Rocks!

  Rocks distribution!
  Looks just like Red Hat!
  Cluster optimized Red Hat!

© 2006 UC Regents! 49!

How You Create Your Own
Rocks!
 Rocks-dist!

  Merges all RPMs!
•  Rocks!
•  Yours!

  Resolves versions!
  Creates Rocks++!

 Your distribution!
  Looks just like Rocks!
  Application optimized

Rocks!

© 2006 UC Regents! 50!

Extension Through Inheritance!
  UCSD/SDSC Rocks!

  BIRN!
  GAMESS Portal!
  GEON!
  GriPhyN!
  Camera!
  Optiputer!

  Commercial!
  Scalable Systems!
  Platform Computing!

  Can also override existing
functionality!
  Rocks without NFS?!
  Rocks for the desktop?!

© 2006 UC Regents! 51!

Rolls!

 Think of a roll as a “package” for a car!

© 2006 UC Regents! 52!

Rolls Break Apart Rocks!

© 2006 UC Regents! 53!

Rocks is What You Make it!
  Motivation!

  “Iʼm concerned Rocks is becoming everything for everyone” - rocks mailing list!
  “Building a cluster should be like ordering a car. I want the sports package, but not the leather seats, …” - z4 owning rocks

developer!
  We need to let go of Rocks but hold onto the core!

•  Recruit more external open-source developers!
•  Only trust ourselves with fundamental architecture and implementation!

  We wanted to move the SGE but need to still support PBS!
  Rolls!

  Optional configuration and software!
  Just another CD for installed (think application pack)!
  SGE and PBS are different Rolls!

•  User chooses scheduler!
•  PBS Roll supported by Norway!
•  SGE Roll supported by Singapore (and us)!

  Rolls give us more flexibility and less work!
  Rocks is done!

  The core is basically stable and needs continued support!
  Rolls allow us to develop new ideas!
  Application Domain specific!

  IEEE Cluster 2004 - “Rolls: Modifying a Standard System Installer to Support User-Customizable Cluster
Frontend Appliances”!

© 2006 UC Regents! 54!

Extensible Rocks!
  Over a dozen Rolls already created (e. g.)!

  SGE, PBS!
  Grid (NMI stack)!
  Java!
  Condor!
  SCE!

  Several third party Rolls have started!
  Quadrics (rumored)!
  PGI (just Released)!
  NIMROD!
  BIRN!
  DB2!

  Rocks is done!
  The core is basically stable and needs continued support!
  Rolls allow us to develop new ideas!
  Application Domain specific!
  For example: Visualization…!

© 2006 UC Regents! 55!

Viz Roll!

Rocks becomes more
than just compute
clusters!

© 2006 UC Regents! 56!

Early Work: NCSA!
  LCD Cluster!

  Custom framing!
  One PC / tile!
  Portable (luggable)!
  SC 2001 Demo!

  NCSA Software!
  Pixel Blaster!
  Display Wall In-A-Box!
  OSCAR based!
  Never fully released!

© 2006 UC Regents! 57!

NCMIR!

 Using Rocks!
 Hand configured a

visualization cluster!
  “Administered the

machine to the point
of instability” - David
Lee!

 Automation is needed!

© 2006 UC Regents! 58!

COTS Vis: GeoWall!
  LCD Clusters!

  One PC / tile!
  Gigabit Ethernet!
  Optional Stereo Glasses!
  Portable!
  Commercial Frame (Reason)!

  Applications!
  Large remote sensing!
  Volume Rendering!
  Seismic Interpretation!
  Brain mapping (NCMIR)!

  Electronic Visualization Lab!
  Jason Leigh (UIC)!

© 2006 UC Regents! 59!

Eye Candy (NCMIR)!

© 2006 UC Regents! 60!

Rocks Installation!

Step by step instruction
for building your cluster!

© 2006 UC Regents! 61!

Frontend Installation!
 Turn on node!
  Insert CDROM!
 Type!

  frontend!

© 2006 UC Regents! 62!

Rolls!
 Anaconda Starts!
 Asks for Rolls!
 Select “Yes”!
  Insert!

  base!
  hpc+kernel!
  area51+java+grid+sge!

© 2006 UC Regents! 63!

Cluster Information!
 Specific to Rocks!
 Used for Certificates!

  SSL/HTTPS!
  Globus!

 Hostname!
  Must be FQDN!
  Must be in DNS!
  Must not be an Alias!

© 2006 UC Regents! 64!

Partitioning!
 Automatic!

  6GB /!
  1GB swap!
  Remainder for /export!

 Manual!
  You choose!
  Must create a /export!

 Select Wisely!

© 2006 UC Regents! 65!

Networks!
 Private Network!

  eth0!
  Cluster-side only!

 Public Network!
  eth1!
  Internet/LAN side!

 You must configure
both and have 2 NICs!

© 2006 UC Regents! 66!

Gateway!
  Gateway / DNS!

  Same as any other device on
you network!

  All traffic for compute nodes is
NATed through the frontend.!

  DNS is only for the frontend,
compute nodes use the
frontend as their DNS.!

© 2006 UC Regents! 67!

Network Time Protocol!
 Choose timezone!

  UTC is a good choice!
  Or localize!

 Default server is!
  time.apple.com!
  Change it if you wish!

© 2006 UC Regents! 68!

Root Password!
 Password is secure!

  Not stored in clear text
form anywhere (not in
DB)!

 Also used for mysql
password!

© 2006 UC Regents! 69!

Installing Packages!

© 2006 UC Regents! 70!

Integrate Compute Nodes!
  Log into Frontend (as root)!
  Run insert-ethers!

  Can choose appliance type!
  Rolls add new appliance types!
  For now we will use Compute!

  Turn on first node!
  Nodes are integrated serially!
  Need to map machine name to

machine location!
  After we integrate machines can

be re-installed in parallel!
  Remote Terminal (ekv)!

  ssh compute-0-0 -p2200!

© 2006 UC Regents! 71!

Discovering Compute-0-0!

Retrieved kickstart file

© 2006 UC Regents! 72!

useradd!

© 2006 UC Regents! 73!

user login!

© 2006 UC Regents! 74!

End!

