Introduction to
MPI| Programming

Rocks-A-Palooza ll
Lab Session

© 2006 UC Regents 1

SBSC



Modes of Parallel Computing

¢ SIMD - Single Instruction Multiple Data

processors are “lock-stepped”: each processor executes single
instruction in synchronism on different data

¢ SPMD - Single Program Multiple Data

processors run asynchronously a personal copy of a program
¢ MIMD - Multiple Instruction Multiple Data

processors run asynchronously: each processor has its own data
and its own instructions

> MPMD - Multiple Program Multiple Data

© 2006 UC Regents



MPI in Parallel Computing

¢ MPI addresses message-passing mode of parallel computation
> Processes have separate address spaces
> Processes communicate via sending and receiving messages
¢ MPI is designed mainly for SPMD/MIMD (or distributed memory
parallel supercomputer)
> Each process is run on a separate node
2 Communication is over high-performance switch

o> Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2,
and Cray T3D

¢ MPI can support shared memory programming model
> Multiple processes can read/write to the same memory location

2 SGI Onyx, Challenge, Power Challenge, Power Challenge Array, IBM
SMP, Convex Exemplar, and the Sequent Symmetry

¢ MPI exploits Network Of Workstations (heterogeneous)

2 Sun, DEC, Hewlett-Packard, SGl, IBM, Intel and Pentium (various

Linux OS)
© 2006 UC Regents



What is MPI?

¢ Message Passing application programmer Interface

> Designed to provide access to parallel hardware
 Clusters
* Heterogeneous networks
- Parallel computers

> Provides for development of parallel libraries

> Message passing
 Point-to-point message passing operations
* Collective (global) operations
> Additional services
- Environmental inquiry
- Basic timing info for measuring application performance

- Profiling interface for external performance monitoring
© 2006 UC Regents



MP| advantages

¢ Mature and well understood
> Backed by widely-supported formal standard (1992)
> Porting is “easy”

¢ Efficiently matches the hardware
= Vendor and public implementations available

¢ User interface:

> Efficient and simple (vs. PVM)
> Buffer handling

> Allow high-level abstractions
¢ Performance

© 2006 UC Regents



MPI disadvantages

¢ MPI 2.0 includes many features beyond
message passing

A

competence

time

¢ Execution control environment depends on
Implementation

© 2006 UC Regents



MPI features

¢ Thread safety

¢ Point-to-point communication
2 Modes of communication

standard synchronous ready buffered

o> Structured buffers
> Derived datatypes

¢ Collective communication
> Native built-in and user-defined collective operations
= Data movement routines

¢ Profiling
> Users can intercept MPI calls and call their own tools

© 2006 UC Regents



Communication modes

¢ standard

o Send has no guarantee that corresponding receive routine has
started

¢ synchronous

> Send and receive can start before each other but complete
together

¢ ready
> used for accessing fast protocols
o user guarantees that matching receive was posted
> use with care!

& buffered
> send may start and return before matching receive
> buffer space must be provided

© 2006 UC Regents



Communication modes (cont’d)

¢ All routines are

> Blocking - return when they are locally complete
« Send does not complete until buffer is empty
+ Receive does not complete until buffer is full
« Completion depends on
size of message
amount of system buffering
> Non-blocking - returns immediately and allows next statement
to execute

+ Use to overlap communication and computation when time to send
data between processes is large

- Immediately returns “request handle” that can be used for querying
and waited on,

« Completion detected by MPI_Wait() or MPI_Test()

© 2006 UC Regents 9



Point-to-point vs. collective

L 4

point-to-point, blocking MPI_Send/MPI_Recv
MPI1_Send(start, count, datatype, dest, tag, comm )
MPI_Recv(start, count, datatype, source, tag, comm, status)
> simple but inefficient

> most work is done by process O:
Get data and send it to other processes (they idle)
May be compute
Collect output from the processes

collective operations to/from all

MPI_Bcast(start, count, datatype, root, comm)

MPI_Reduce(start, result, count, datatype, operation, root, comm)
> called by all processes

> simple, compact, more efficient

2 must have the same size for “count”and “datatype”

> “result’ has significance only on node O

© 2006 UC Regents 10



MPI complexity

¢ MPI extensive functionality is provided by many
(125+) functions

¢ Do | Need them all ?

2 No need to learn them all to use MPI

> Can use just 6 basic functions
MPI_Init
MPI_Comm_size
MPI_Comm_rank

{MPI_Send} or {MPI_Bcast }

MPI_Recv MPI_Reduce
MPI_Finalize

> Flexibility: use more functions as required

© 2006 UC Regents 11



To be or not to be MPI user

¢ Use If:
2 Your data do not fit data parallel model
» Need portable parallel program
» Writing parallel library

¢ Don’t use if:
» Don’t need any parallelism
» Can use libraries
» Can use fortran

© 2006 UC Regents 12



Writing MPI programs

+ provide basic MPI definitions and types
#include “mpi.h”

o start MPI
MPI_Init( &argc, &argyv );

+ provide local non-MPI routines

¢ exit MPI
MPI_Finalize():

see /opt/mpich/gnu/examples
/opt/mpich/gnu/share/examples

© 2006 UC Regents

13



Compiling MPI programs

¢ From a command line:
S mpicc -0 prog prog.c

¢ Use profiling options (specific to mpich)
> -mpilog Generate log files of MPI calls
> -mpitrace Trace execution of MPI calls

> -mpianim Real-time animation of MPI (not available on all
systems)

> --help Find list of available options

¢ Use makefile!
> get Makefile.in template and create Makefile
mpireconfig Makefile
> compile
make progName
© 2006 UC Regents 14



Running MPI program

¢ Depends on your implementation of MPI

> For mpich:
* mpirun -np2 foo # run MPI program
> Forlam:
« lamboot -v lamhosts # starts LAM
* mpirun -v -np 2 foo # run MPI program
« lamclean -v # rm all user processes
* mpirun ... # run another program
« lamclean ...
* lamhalt # stop LAM

© 2006 UC Regents 15



Common MPI flavors on Rocks

interconnect

<theme> <ny>
| v
e

compiler
—




MPI flavors path

/opt + MPI flavor + interconnect + compiler + bin/ + executable

/s MPICH + Ethernet + GNU \ /¢ LAM + Ethernet+ GNU "\

lopt/mpich/ethernet/gnu/bin/... /opt/lam/ethernet/gnu/bin/...
¢ MPICH + Myrinet + GNU ¢ LAM + Myrinet + GNU
/opt/mpich/myrinet/gnu/bin/... Jopt/lam/myrinet/gnu/bin/...
¢ MPICH + Ethernet + INTEL ¢ LAM + Ethernet + INTEL
/opt/mpich/ethernet/intel/bin/... /opt/lam/ethernet/intel/bin/...
¢ MPICH + Myrinet + INTEL o LAM + Myrinet + INTEL
\_  /opt/mpich/myrinet/intel/bin/... )\ " jopt1am/myrinetintel/biny... /
C: mpicc C++: mpiCC
F77: mpif77 F90: mpif90

© 2006 UC Regents 17



What provides MPI

lam myrinet
mpich

© 2006 UC Regents



Example 1: LAM hello

Execute all commands as a regular user

1. Start ssh agent for key management
$ ssh-agent $SHELL
2. Add your keys
$ ssh-add
(at prompt give your ssh passphrase)
3. Make sure you have right mpicc:
$ which mpicc
(output must be /opt/lam/gnu/bin/mpicc)
4. Create program source hello.c (see next page)

© 2006 UC Regents

19



hello.c

#include "mpi.h"

#include <stdio.h>

int main(int argc ,char *argvi])

{
iInt myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
fprintf(stdout, "Hello World, | am process %d\n", myrank);
MPI_Finalize();
return O;

© 2006 UC Regents

20



Example 1 (cont’d)

S. compile
$ mpicc -o hello hello.c
6. create machines file with IP’s of two nodes. Use your numbers here!
198.202.156.1
198.202.156.2
7. start LAM
$ lamboot -v machines
8. run your program
$ mpirun -np 2 -v hello
9. clean after the run
$ lamclean -v
10. stop LAM

$ lamhalt

© 2006 UC Regents 21



Example1 output

$ ssh-agent $SHELL

$ ssh-add

Enter passphrase for /Thome/nadya/.ssh/id_rsa:
Identity added: /home/nadya/.ssh/id_rsa (/home/nadya/.ssh/id_rsa)

$ which mpicc

/opt/lam/gnu/bin/mpicc

$ mpicc -o hello hello.c

$ lamboot -v machines

LAM 7.1.1/MPI 2 C++/ROMIO - Indiana University

n-1<27213> ssi:boot:base:linear: booting n0 (rocks-155.sdsc.edu)
n-1<27213> ssi:boot:base:linear: booting n1 (10.255.255.254)
n-1<27213> ssi:boot:base:linear: finished

$ mpirun -np 2 -v hello

27245 hello running on n0 (0)
7791 hello running on n1
Hello World, | am process 0
Hello World, | am process 1

$ lamclean -v

killing processes, done

closing files, done

sweeping traces, done

cleaning up registered objects, done
sweeping messages, done

$ lamhalt

LAM 7.1.1/MPI1 2 C++/ROMIO - Indiana University

© 2006 UC Regents

22



Example 2: mpich cpl

1. set your ssh keys as in example 1 (if not done already)
$ ssh-agent $SHELL
$ ssh-add
2. copy example files to your working directory
$ cp /opt/mpich/gnu/examples/*.c .
$ cp /opt/mpich/gnu/examples/Makefile.in .
3. create Makefile
$ mpireconfig Makefile
4. make sure you have right mpicc
$ which mpicc
If output lists path /opt/lam... update the path:
$ export PATH=$/opt/mpich/gnu/bin:$PATH
5. compile your program
$ make cpi
6. run
$ mpirun -np 2 -machinefile machines cpi
or $ mpirun -nolocal -np 2 -machinefile machines cpi

© 2006 UC Regents



Example 2 details

*

¢

If using frontend and compute nodes in machines file use
mpirun -np 2 -machinefile machines cpi

If using only compute nodes in machine file use

mpirun -nolocal -np 2 -machinefile machines cpi

> -nolocal - don’t start job on frontend

2 -np 2 - start job on 2 nodes

> -machinefile machines - nodes are specified in machinesfile
> cpi - start program cpi

© 2006 UC Regents

24



More examples

¢ See CPU benchmark lab

> how to run linpack

¢ Additional examples in
> /opt/mpich/gnu/examples
> /opt/mpich/gnu/share/examples

© 2006 UC Regents

25



Cleanup when an MPI Program
Crashes

¢ MPICH in Rocks uses shared memory segments to pass
messages between processes on the same node

¢ When an MPICH program crashes, it doesn’t properly cleanup
these shared memory segments

¢ After a program crash, run:
$ cluster-fork sh /opt/mpich/gnu/sbin/cleanipcs

¢ NOTE: this removes all shared memory segments for your user id

> If you have other live MPI programs running, this will remove
their shared memory segments too and cause that program to

fail

© 2006 UC Regents 26



Steps to combine SGE and MP|

1. create SGE submit script
2. run gsub command

$ gsub runprog.sh
$ gsub -pe mpich 32 runprog.sh

3. check job status

$ gstat -

© 2006 UC Regents 27



SGE submit script

& Script contents
#!/bin/tcsh

#% -S /bin/tcsh

setenv MPIl=/path/to/MPIl/binaries

$MPI/mpirun -machinefile machines -np $NSLOTS appname
¢ make it executable

$ chmod +x runprog.sh

© 2006 UC Regents

28



Submit file options

# meet given resource request
#$ -1 h_rt=600

# specify interpreting shell for the job
#3 -S /bin/sh

# use path for stadard output of job
#9 -0 path

# execute from current dir See “man gsub” for more options
#9$ -cwd

# run on 32 processes in mpich PE
#3 -pe mpich 32

# Export all environmental variables
#$ -V

# Export these environmental variables
#$ -v MPI_ROOT,FOOBAR=BAR

© 2006 UC Regents 29



Online resources

MPI standard:
WWW-unix.mcs.anl.gov/mpi

Local Area Multicomputer MP| (LAM MPI):
www.osc.edu/lam.html

MPICH:
www.mcs.anl.gov/mpi/mpich

Aggregate Function MPI| (AFMPI):
garage.ecn.purdue.edu/~papers

Lam tutorial
www.lam-mpi.org/tutorials/one-step/lam.php

© 2006 UC Regents

30



Glossary

MPI - message passing interface

PVM - parallel virtual machine

LAM - local area multicomputer

P4 - 3rd generation parallel programming library, includes
message-passing and shared-memory components

Chameleon - high-performance portability package for

message passing on parallel supercomputers
Zipcode - portable system for writing of scalable libraries
ADI - abstract device architecture

© 2006 UC Regents 31



Glossary (cont’d)

SIMD - Single Instruction Multiple Data
SPMD - Single Program Multiple Data
MIMD - Multiple Instruction Multiple Data
MPMD - Multiple Program Multiple Data

© 2006 UC Regents

32



