
Rolls: Modifying a Standard System Installer to Support
User-Customizable Cluster Frontend Appliances

Greg Bruno, Mason J. Katz, Federico D. Sacerdoti and Philip M. Papadopoulos
The San Diego Supercomputer Center

University of California San Diego
La Jolla, CA 92093-0505

{bruno,mjk,fds,phil}@sdsc.edu
http://www.rocksclusters.org

July 2, 2004

Abstract

The Rocks toolkit [9], [7], [10] uses a graph-based frame-
work to describe the configuration of all node types
(termed appliances) that make up a complete cluster.
With hundreds of deployed clusters, our turnkey systems
approach has shown to be quite easily adapted to differ-
ent hardware and logical node configurations. However,
the Rocks architecture and implementation contains a sig-
nificant asymmetry: the graph definition of all appliance
typesexcept the initial frontendcan be modified and ex-
tended by the end-user before installation. However, fron-
tends can be modified only afterward by hands-on system
administration. To address this administrative discontinu-
ity between nodes and frontends, we describe the design
and implementation ofRolls. First and foremost, Rolls
provide both the architecture and mechanisms that enable
the end-user to incrementally and programmatically mod-
ify the graph description forall appliance types. New
functionality can be added and any Rocks-supplied soft-
ware component can be overwritten or removed simply
by inserting the desired Roll CD(s) at installation time.
This symmetric approach to cluster construction has al-
lowed us to shrink the core of the Rocks implementation
while increasing flexibility for the end-user. Rolls are op-
tional, automatically configured, cluster-aware software
systems. Current add-ons include: scheduling systems
(SGE, PBS), Grid Support (based on NSF Middleware

Initiative), Database Support (DB2), Condor, Integrity
Checking (Tripwire) and the Intel Compiler. Community-
specific Rolls can be and are developed by groups outside
of the Rocks core development group.

1 Introduction

Commodity clusters have emerged as the dominant com-
putational tool for high-performance computing. This
claim is supported by the fact that 58% of the Top500
fastest supercomputers [4] in the world are commodity
clusters – the next closest classification occupies 24% of
the list. Yet, high-performance computing clusters are
only the most visible instantiation of this class of ma-
chines. Clusters are becoming prevalent in other areas
including databases, distributed (grid-based) systems, vi-
sualization, and storage. These types of clusters are dif-
ferentiated from HPC by their inclusion of specialized
hardware subsystems (e.g., high-end video card or a stor-
age area network (SAN) interface) and/or the additional
software packages and services that must be installed and
configured.

A storage cluster, for example, usually doesn’t need
a batch scheduler, but does need a specific partitioning
scheme and a properly configured parallel file system. On
the other hand, both HPC and storage cluster builders may
want to add grid capabilities for remote access. One read-



ily observes that clusters of all types generally have a sig-
nificant amount of shared functionality and are differenti-
ated by a relatively small number of software services.

Traditionally, the designers of open-
source [7], [5], [15], [14], [1], [12] and commercially
available cluster management offerings [2] have focused
almost exclusively on HPC. Groups that need to build
non-HPC clusters have been forced to adopt an HPC stack
then manually customize the machine by both removing
undesired functionality and adding missing functionality.
Or worse, they opt to build their own complete solution.
Unfortunately, many groups start over, build their own
cluster system and re-invent significant functionality that
could be leveraged from the HPC space.

We believe that the basic problem stems from a com-
mon construction technique (which is also used in Rocks);
the frontend (or head node) is built first and then all clus-
ter nodes are installed using services on the frontend. Be-
cause the frontend is the first component bootstrapped in
a cluster, it occupies a unique role in the complete sys-
tem configuration and is therefore the most difficult to
fully customize. Most end-users have to rely on compe-
tent system administrators to make substantive changes
to the frontendafter it has been installed. In our earlier
paper [9], we described cluster management as devolv-
ing into administering two systems; the frontend and the
compute nodes. Unfortunately, significant hand configu-
ration often leads to unintended errors, reducing overall
reliability, and making system reproducibility difficult to
achieve.

A key goal is to remove the administrative dichotomy
between frontends and all other node types. In [7] we
reported on our graph-based configuration method for
building node appliances. Our complete system allows us
to programmatically describe the configuration of nodes
and automatically deploy them across relatively large
clusters [10]. This paper extends that work and introduces
Rolls which, at their core, allow us to create and modify
a complete system graph before frontend build time, just
like all other appliances. What this means is that users can
systematically modify a frontend configurationa priori
and not rely on a system administrator to make changes
afterward. The frontend still serves as a bootstrap node
for the entire cluster preserving this well-accepted divi-
sion of labor.

From a user’s perspective, she only needs to insert

Roll CDs at frontend build time to extend (or overwrite)
configured software services. Optional software such as
batch schedulers, grid services, integrity checkers, and
community-specific customizations are trivially added,
and more importantly, configured correctly without active
administration. The Roll itself, created by an expert and
downloaded by the end-user, contains all necessary infor-
mation. Specifically, how to graft on new subgraphs to the
Rocks core, which packages are needed for various appli-
ance types, and what new information (if any) needs to be
gathered from the end-user to properly configure new ser-
vices. Effectively, Rolls are first-class extensions to the
base system.

This approach has several key benefits: 1) the Rocks
core functionality is actually made smaller (and hence
easier to maintain as a robust system) but is overall more
flexible; 2) other clusters types are more easily defined
and inherit the turnkey deployment mechanisms of the
Rocks core; 3) the entire system is more reproducible
because a large amount of administrative uncertainty is
removed; and 4) external developers need to focus only
on additional (or replacement of) functionality instead of
building a completely new cluster stack.

Section 3 provides an overview of the Rocks Cluster
Distribution (the software system that uses the method de-
scribed in this paper). Section 4 describes Rolls in detail.
Section 5 details the mechanisms used to graft Rolls into
a standard system installation tool. Lastly, in Section 6
we provide a summary of our work.

2 Related Work

After any cluster is physically assembled, a user must de-
fine a complex software stack for all nodes and then phys-
ically install them. Common practice is to first install a
frontend(alternatively a head-node); this machine houses
user data as well as the tools to develop and run cluster-
wide services such as a batch scheduler, domain name
server, and cluster monitoring. Compute and other types
of nodes are then installed using instructions or images
housed on the frontend.

There are three approaches used to install cluster soft-
ware services: manual, add-on and integrated.



2.1 Manual Approach

In the manual approach, a user with significant system
administration experience brings up the frontend by in-
stalling the base OS (e.g., by using a installation util-
ity bundled within a Linux distribution such as Red Hat
or SuSE). After the base OS is installed, all cluster-
specific software is downloaded and/or installed on the
frontend. These extra packages are merged with the base
OS to produce an augmented RPM-based distribution (or
a “golden image”) that will be used to install the compute
nodes. Manual configuration and maintenance of DHCP
and PXE services (or unique boot floppies/CDs) is used
to assign unique names and IP address to compute nodes
and to push the manually assembled software stack to the
compute nodes.

2.2 Add-On Method

Similar to the manual approach, theadd-onmethod also
requires a system administrator to first install a base OS
on the frontend. After the frontend is installed and booted,
the cluster building components are downloaded and in-
stalled. For example, tools to uniquely name and install
compute nodes are included within these packages that re-
duce the complexity of manipulating the DHCP and PXE
services as described in the previous section.

Cluster toolkits such as OSCAR [5] and Warewulf [15]
are representative of this add-on method. Furthermore,
these toolkits focus exclusively on HPC and assume a
highly-competent cluster-aware system administrator to
make any substantial changes to either software config-
uration or installation of new cluster-wide services.

2.3 Integrated Method

In the integrated method, the base OS, the cluster-specific
services, and cluster building tools are bundled into one
distribution. All cluster services and tools are installed
and configured during the initial installation of the fron-
tend, that is, no outside packages need to be downloaded
and manually configured in order to bring up an entire
cluster.

Examples of this method are Scyld [2] and Rocks.
Scyld uses a modified kernel and system libraries in or-
der to support their job control features [6] while Rocks
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Figure 1: Rocks hardware architecture. Based on a
minimal traditional cluster architecture.

leverages the default kernel and libraries as supplied by
Red Hat.

3 Rocks Cluster Distribution
Overview

Rocks is a cluster-aware Linux distribution based upon
Red Hat with additional packages and programmed
configuration to automate the deployment of high-
performance Linux clusters1. Rocks is deployed on a
minimal traditional cluster architecture (Figure 1) [13,
11]. This system is composed of standard high-volume
servers, an Ethernet network and an optional off-the-shelf
high-performance cluster interconnect (e.g., Myrinet).
We have defined the Rocks cluster architecture to contain
a minimal set of high-volume components in an effort to
build reliable systems by reducing the component count
and by using components with large mean-time-to-failure
specifications.

Software installation within Rocks unifies two orthog-
onal processes: the installation of software packages and
their configuration. The traditional single desktop ap-
proach to this process is to install software packages and
then, through a process of manual data entry, configure
the installed services to one’s requirements. A common

1For a summary of other cluster-building tools, see [7].



extension of this process to clusters is to hand configure
a single node and replicate this “golden image” onto all
nodes in a cluster. Although this works with homoge-
neous hardware and static cluster functional requirements,
we have found that clusters rarely contain either of these
attributes.

Rocks treats software installation and software con-
figuration as separate components of a single process.
This means that manual configuration required to build
a “golden image” is instead automated, and no image is
ever built. The key advantage is the dissemination of in-
tellectual property. Building cluster “golden images” is
more often than not an exercise in replicating the work
done by other cluster builders. By automating this con-
figuration task out-of-band from system installation, the
software configuration is specified only once for all the
Rocks clusters deployed world-wide2.

Installation of software packages is done in the form
of package installs according to the functional role of a
single cluster node. This is also true for the software con-
figuration. Once both the software packages and software
configuration are installed on a machine, we refer to the
machine as anappliance. Rocks clusters often contain
Frontend, Compute, andNFSappliances. A simple con-
figuration graph (expressed in XML) allows cluster archi-
tects to define new appliance types and take full advantage
of code re-use for software installation and configuration.
Details of this framework are discussed in a previous pa-
per [7], the Roll extensions are presented in Section 5.

The design goal of Rocks is to enable non-cluster ex-
perts to easily build and manage their own clusters. To
support this goal, we identify two key design elements in
Rocks: 1) the automation of administration functions, and
2) repeatability. We ensure everything developed in our
lab can be easily deployed in other groups’ labs. The first
goal is critical for fully-automated node installation, an
important property when integrating clusters at scale [10].
The second goal, the topic of this paper, is addressed by
the construct we call Rolls.

2As of July 2004, Rocks has been deployed at over
200 sites representing over 51 teraflops of peak computing
(www.rocksclusters.org/rocks-register ).
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Figure 3: SGE Roll configuration package files repre-
sent the configuration sub-graph for SGE.

4 Rolls

A Roll is a self-contained ISO image that holds packages
and their configuration scripts. Figure 2 displays the con-
tents of the SGE roll. This layout is nearly identical to the
layout of a Red Hat produced ISO image. This was inten-
tional as 1) it allows us to use Red Hat supplied scripts to
assist in building the Roll, and 2) it is a familiar structure
for those developers who have previous experience with
building Red Hat distributions.

The RedHat/base directory contains two files that
can be used by Red Hat’s distribution utilities to query
the contents of the Roll. Currently, our extensions to Red
Hat’s installer do not access these files (our extensions di-
rectly access the contents of the Roll in order to install
packages). These files are present to support our experi-
mentation regarding future Roll features.

The RedHat/RPMS directory contains the bi-
nary packages that comprise the Roll. One package
in particular holds all the configuration informa-
tion for all the packages found on the Roll. In
the case of the SGE Roll, this package is named
roll-sge-kickstart-3.2.0-0.noarch.rpm .
Figure 3 displays the contents of this package with XML
files in the nodes and graphs/default directory.
The files in thenodes directory are vertices in a config-
uration graph, while the file in thegraphs/default
directory defines the edges that connect the SGE vertices
to one another as well as the connections to vertices
outside the SGE Roll. Each of the vertices from the
SGE Roll sub-graph contains (expressed in XML) a list
of Red Hat packages and optional configuration scripts
to turn a meta-package into a fully configured software
deployment. A deeper description of Roll vertices and
edges is found in the next section.

To create a Roll, the developer must first checkout the
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Rocks source tree and then create a directory structure
similar to the SGE Roll as displayed in Figure 4. All
source code is housed under thesrc directory. Binary
RPMs that are created after the source is successfully
built are stored in theRPMSdirectory. Additionally,
any 3rd-party binary RPMS can be manually placed
into the RPMSdirectory. The graphs and nodes files
are the files that will comprise the configuration pack-
age (in the case of SGE, this is the package named
roll-sge-kickstart-3.2.0-0.noarch.rpm ).
The Rocks build environment automatically constructs
this package when the developer executes the command
make roll .

The commandmake roll is used to create a Roll
ISO image. The first task performed is to automatically
construct the configuration package for the Roll. Then
every directory undersrc is traversed resulting in newly
built binary RPMS. Finally, an ISO image is built (resem-
bling the form of Figure 2).

One of the extensions we applied to the standard Red
Hat installer is to search for and apply the configura-
tion package for each Roll to the installation environment.
This allows Rolls to dynamically alter the distribution as
seen by the standard system installer. How this functions
is the topic of the next section.

5 Graph-Based Configuration

Prior to the introduction of Rolls all software installation
and configuration was driven from a single configuration
graph describing the construction of all machines in a
cluster. This graph, the subject of [7], expressed both the
set of packages to be installed and the individual package
configuration. While the former is reasonably generic and
applies to all clusters, the second is highly site-specific
and defines what makes a cluster unique. This configu-
ration graph was composed of nearly two hundredvertex
files and a singlegraphXML file. Eachvertexfile speci-
fied the complete software package and configuration in-
formation for a specific function. For example, the single
vertexfile ssh.xml described the SSH service that per-
mits user logins on all nodes in the cluster. Thegraphfile
specified the directed graph edges that connect the ver-
tices to each other. Using this XML representation of a
configuration graph complete software configuration for

any cluster node type could be produced by traversing
the configuration graph from the appropriate entry point
vertex. For example, the configuration graph had ver-
tices namedcomputeandfrontend which were the entry
points for building compute nodes and frontends. Rolls
further decompose this configuration from a single graph
of hundreds of nodes, into multiple sub-graphs which are
assembled at installation time into what was previously a
single monolithic framework. Figure 5 is a representation
of the core Rocks sub-graph which describes the config-
uration of appliances in a Rocks cluster, minus any Roll
provided configuration.

This core configuration graph describes the minimum
functionality to build aserver and aclient. Where a
server is defined as a machine that has the ability to build
other machines (e.g., the frontend), and aclient is defined
as a machine built by aserver (e.g., compute nodes). The
implementation of this is a Red Hat Kickstart file pro-
duced by the server node whenever a new client node is
added to the cluster. This Kickstart file is compiled from
a traversal of the graph starting at theclient vertex. Simi-
larly, the frontend node is also Kickstarted when the clus-
ter is first constructed using this same mechanism, except
the traversal begins at theserver vertex. While this base
configuration graph describes the different functionality
between frontend nodes and compute nodes, it does not
include a full description of standard cluster computing
tools such as MPI, PVM, Ganglia, Globus, Sun Grid En-
gine, and other cluster middleware. This additional infor-
mation is completely contained on the respective Rolls.

Figure 6 is the configuration graph for the SGE Roll.
On the left-hand side of the figure, there are two uncol-
ored vertices:server andclient. These describe what the
configuration of frontend SGE services and compute node
SGE services are with shared functionality found within
thesgevertex. Theserver andclient vertices are uncol-
ored because they are foreign to the SGE roll and are
well-known graft pointsinto the core Rocks configura-
tion graph. When the SGE Roll is grafted into the core
graph, the cluster’s frontend and compute node configu-
rations are updated to include the Sun Grid Engine ser-
vice. This graph also includes another uncolored (and
foreign) globus vertex which has a directed edge to the
sge-globusvertex. Thesge-globusvertex describes the
configuration of SGE GRAM which allows Globus job
submissions to run on the local scheduler, something that
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is highly scheduler specific. However, Globus support is
included in Rocks via the Grid Roll. By expressing this
globus→ sge-globusdependency in the SGE Roll, we
can configure the SGE GRAM if and only if the Grid Roll
is present during installation. In other words, without the
Grid Roll included, theglobusvertex will be absent from
the fully-assembled composite graph and no path tosge-
globuswill be preset. In this manner, a Roll’s sub-graph
is not only grafted into the core configuration graph, but
it may also include inter-roll relationships.

In addition to the optional SGE Roll, Rocks provides a
required HPC Roll which also contains the foreign ver-
tices server and client. The HPC graph describes the
configuration of MPI, PVM, Ganglia, and other standard
HPC software commonly deployed on a cluster. We view
the HPC Roll as the minimum additional configuration
required to build a complete MPI Cluster. Figure 7 is the
composite graph of the core, HPC, and SGE sub-graphs.
The color of each vertex and edge indicates the Roll it
came from. Note that the core functionality is found pri-
marily on the right-hand side of the graph (near the leaf
nodes), the HPC configuration is found on the left-hand
side (near the root nodes), and the SGE configuration is
peppered throughout. This indicates that the HPC Roll
builds on top of the core Rocks configuration, while the
SGE Roll affects all aspects of configuration.

Figure 8 zooms in on the center of Figure 7. In this
view of the composite graph, functionality and inter-roll
relationships are expressed from the core and the HPC
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and SGE Rolls. In our previous monolithic framework,
this information was expressed in a single central place,
where now logical component pieces are identified as
sub-graphsand engineered and maintained independently
from one another. It is by our just-in-time graph assem-
bly that this composite graph is produced prior to system
installation that a complete Rocks core, HPC, and SGE
configuration can be instantiated as a single operation, and
with all inter-component relationships satisfied.

6 Future Work and Summary

In this paper, we described a method to customize a fron-
tend appliance by making modifications to a standard sys-
tem installer and coupling them with our graph-based sys-
tem configuration infrastructure. Modifications to the sys-
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tem installer were necessary in order to perform end-user
customizations of the frontend during the initial build (as
opposed to theadd-onmethod which adds cluster-specific
packages after a base OS is applied to a frontend ma-
chine). This modification enabled the addition and con-
figuration of non-OS components in the controlled envi-
ronment of the installer. With this method, we believe
it guarantees consistent software configuration by reduc-
ing sources of uncertainty in the system. Currently, we
only have anecdotal evidence to support this claim; formal
methods need to be applied to our mechanisms to prove
it.

Some have objected this method is too invasive: any in-
cremental update to the software stack must be carried out
with a complete reinstall. Users have also requested the
ability to install a Roll separately from the OS, an add-on
strategy. We are investigating methods in which to pro-
vide the controlled environment of the system installer on
a running system. We are also in the process of character-
izing what guarantees from our existing approach can be
carried forward to an add-on/Roll hybrid strategy.

Although our method allows dynamic graph assem-
bly, it relies on the Roll developer to specify connection
points in both the core graph and possibly graphs of other
Rolls. Currently we make heavy use of both theserver
andclient vertices in the core graph as well-known graft
points. However, by borrowing introspective techniques
from languages like Java, we may be able to generate a
richer list of well-known graft points and enable a more
autonomous Roll development environment by minimiz-
ing the core graph knowledge required.

This paper also described how Rocks utilizes Rolls in
order to export a cluster-aware Linux distribution. Other
projects also use our method to provide services focused
on specific communities. For example, the Geoscience
Network [3] use Rolls to build a common environment
in a grid of clusters to help researchers understand the
complex dynamics of Earth systems. The Biomedical In-
formatics Research Network [8] similarly use the Roll
mechanism to distribute software components that pro-
cess brain imaging files in order to study human neuro-
logical disease and associated animal models.



More information about Rocks and download-
able ISO images for the Rocks Base and all the
Rolls mentioned in the paper can be found at
http://www.rocksclusters.org .
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