
Wide Area Cluster Monitoring with Ganglia
Federico D. Sacerdoti, Mason J. Katz
San Diego Supercomputing Center
{fds, mjk}@sdsc.edu

Matthew L. Massie, David E. Culler
Univ. of California, Berkeley
{massie, culler}@cs.berkeley.edu

Abstract
In this paper, we present a structure for monitoring a
large set of computational clusters. We illustrate
methods for scaling a monitor network comprised of
many clusters while keeping processing requirements
low. A design for presenting high-level web-based
summaries of the monitor network is provided, along
with a generalization to a distributed, multiple-
resolution monitoring tree. Emphasis is placed on
scalability, fast query response, fault tolerance, and grid
compatibility. Experimental evidence is presented that
demonstrates the performance of our design.

1. Introduction
Computational clusters made from commodity
components have gained an established seat in
production environments. [5,17] Like other production-
class resources, we desire to monitor clusters for
auditing, accounting, performance assessment, and
design feedback purposes. Monitoring clusters
comprised of distributed components also creates
unique challenges. First, we need a “nervous system” in
the cluster that alerts us to damaged components.
Second, detailed monitoring enables users to effectively
tune the performance of parallel applications.

Wide-area monitoring is necessary because we often
wish to process and display monitored information at a
remote location. It is also helpful to provide statistics
over multiple clusters, to give a larger yet less detailed
view of computing resources. This concept generalizes
to a multiple-resolution view of a cluster set, where the
system can provide an overall summary and other
views with progressively more detail about fewer
clusters. In this paper we focus on novel techniques to
efficiently support a multiple-resolution view of large
cluster sets.

The strategy uses a distributed tree structure that
enables organizations to monitor an arbitrarily large
number of clusters while placing bounds on the
required processing load. To enable efficient multiple-
resolution views, we organize monitored data in

structures that support high-speed queries with different
levels of detail.

Our work extends the wide-area scalability and
performance of the Ganglia monitoring system [1].
Ganglia is comprised of two components, the Gmon
local-area monitoring system, and the Gmeta wide-area
system, the emphasis of this paper. Gmeta processes
and presents monitoring information gathered from one
or more clusters running the Gmon local-area monitor.

The Gmon system operates at the cluster level and
gathers metrics such as heartbeats, hardware/operating
system parameters, and user-defined key-value pairs
from every node. Gmon uses UDP multicast to
exchange these metrics within the cluster. The local-
area multicast backbone enables gmon agents to
organize into a redundant, leaderless network where
nodes listen to their neighbors rather than polling them
[1]. With this method, the monitor does not need a
priori knowledge of cluster nodes. Gmon can adapt to a
dynamically changing cluster, using soft-state
techniques [15] to incorporate newly arrived and
departed nodes automatically. Practical experience
shows that such a model is beneficial for the dynamic
environment inside commodity clusters.

gmeta

Cluster

UDP mcast

X

XM
L o
ver
 TC
P

gmon

Figure 1: Ganglia local and wide area
monitor interaction. Gmon runs on each
cluster node; gmeta can fail over between
nodes.

Gmon communicates with its Gmeta counterpart using
XML streams sent over TCP connections (fig 1). These
reports are suitable for travel over wide area networks,
where multicast support is unreliable. However TCP is
not enough. Any monitoring system that operates over
the wide-area must handle remote failures.

Both stop and intermittent failure masking is facilitated
by Gmon’s design. All Gmon agents have redundant
global knowledge of the cluster, so that any node can
supply a complete report containing the state of itself
and all its neighbors. The wide-area Gmeta uses this
ability to automatically fail-over when a cluster node
malfunctions (fig 1), preventing a node stop failure
from disrupting its monitoring activities. To handle
intermittent failures, Gmeta retries the failed node
periodically. If multiple failures render the monitored
cluster unreachable, Gmeta keeps a set of metric
histories that aid in forensic analysis.

This work concentrates on how monitoring information
is aggregated, archived, and delegated. The wide-area
Gmeta concerns itself only with a metric’s type and
context: which host, and in which cluster it originated
from. We show how additive reductions on monitoring
data (called summaries) reduce the amount of network
and processing resources required by the monitoring
system, and how a simple query language leads to
dramatic increases in the efficiency of the presentation
layer.

The rest of this paper is organized as follows. In
Section 2 we present related work concerning cluster
monitoring. Section 3 outlines the principle
requirements and goals of a monitoring system, follwed
by the characterization of several approaches designed
to meet them. In Section 4 we present quantitative
evidence of the performance of our solution, and in
Section 5 we discuss limitations inherent in our strategy
and paths for future work. Section 6 finally concludes
our findings.

1. Related Work
While Ganglia specifies a strong delineation between
cluster-level monitoring and wide-area monitoring,
many similar systems do not. Accordingly we
concentrate on monitors that provide wide-area
capabilities. Related systems also vary in terms of their
monitoring strategy (polling or event-driven) and their
information hierarchy (host-based, user-based, or job-
based).

The Supermon system [2] employs a wide-area
monitoring strategy similar to our own. A mon server

on every node serves monitoring data on a TCP port. A
s upe rmon server collects this data by serially
connecting to each mon server. Supermon must have a
priori knowledge of each cluster node; the system
cannot incorporate new nodes without an explicit
registration step. The system keeps no record of metric
history, making time-series measurements such as
CPU% difficult.

Supermon requires O(CH) network connections to
obtain cluster state, where CH is the number of hosts in
all clusters. Ganglia requires just one (to its multicast
channel) and by gathering knowledge gradually over
time, can satisfy queries using only its local state,
without the need for any communication. However, its
mon agents are quite lightweight and support rapid
polling rates. Its ability to organize into a tree hierarchy
is also similar to our own design.

Both Supermon and Ganglia use recursive languages to
represent monitored data, S-expressions and XML
respectively. This choice allows the desirable
characteristic of hierarchical composability. A
Supermon provides output in the same format as mon,
enabling traditional hierarchies for the distribution of
monitoring tasks. Although information flow from all
clusters to the root can become overwhelming, this tree
structure is the key to efficiently manage an arbitrarily
large number of clusters (fig 2).

Clumon [3] is a monitoring system developed at
NCSA. It relies on a subset of SGI’s Performance Co-
Pilot monitoring system [4] to collect host data, and
additionally tracks jobs submitted to PBS queues.
Clumon uses a job-based information hierarchy,

root

ucsd sdsc

physics atticmath

Figure 2: A hierarchical monitoring tree.
Hexagons are wide-area monitors, circles
represent cluster-area gmons. Grey lines
denote trust edges. This configuration is
used in the experimental section as well.

organized around the PBS batch queues. The system
has no allowance for monitoring multiple clusters as
one cohesive unit, nor does its native data format (SQL)
allow a hierarchical structure similar to Ganglia and
Supermon.

Ganglia VO (Virtual Organization) [9] is a specialized
version of Ganglia developed at the University of
Chicago. Their local-area monitor is unaltered, while
the wide-area system extends Ganglia to allow a 2-level
monitoring tree, and can report summary data at each
level. Ganglia VO explores fractional access policies on
a grid of clusters, and has a user/group-centric
information hierarchy based on virtual organizations.
The authors emphasize policy semantics and
enforcement over wide-area scaling and performance.

The Metacomputing Directory Service (MDS) [18] is
the wide area information service used by the Globus
project [19]. Although similar to a wide-area cluster
monitoring system, MDS is designed to characterize a
resource rather than profile it. As such, its storage
system is biased towards relatively static cluster
attributes such as their network interface types, CPU
speeds, and memory capacities. MDS does not keep
metric histories, nor does its TTL-based caching
method lend itself to tracking quickly changing metrics.
However, MDS employs a more sophisticated
certificate-based trust model than Ganglia, and its
monitoring hierarchy has a more dynamic structure.
Ganglia and MDS have a symbiotic relationship via
interfaces that allow Ganglia’s gmon to function as a
leaf node in an MDS tree.

Dproc [20] uses kernel-level communication channels
to efficiently distribute cluster monitoring information
via the /proc virtual filesystem interface. Dproc
currently does not support wide area monitoring.

Much work in the literature has explored strategies for
network monitoring. The Network Weather Service
[10] and work done at Bell Labs [7,8] fall into this
category. Ganglia does not share this goal. We are
biased towards monitoring physical hosts at the
endpoints of a network, rather than the network itself.
Therefore our design concentrates on minimizing the
monitor’s overall resource use rather than perturbing
and measuring the network state.

2. Design
We begin by enumerating the significant requirements
of an effective wide-area monitor.

• Light weight. This requirement is critical for
accurate measurements, and because
computing cycles are valuable.

• Low impact on monitors. The monitoring
systems themselves have a finite computing
capacity, which must suffice for gathering,
archiving, and querying activities on
monitored data.

• Robust in face of cluster failures. Any monitor
operating over the wide area must deal
gracefully with remote failures.

• Scalability. The monitoring system must scale
to handle an arbitrarily large number of
clusters. At the limit we can imagine every
cluster in the world connected together in a
single massive Grid.

• Historical archives. Monitors by nature handle
streams of time series data. The system should
efficiently archive these streams and support
basic queries against them.

These requirements are desirable in an effective wide-
area monitoring system. In following sections we
present a set of designs that address them to varying
degrees.

The monitoring tree model is common to all designs
presented here. The nodes of the tree include all
clusters in the set to be monitored, and wide-area gmeta
agents. Non-leaf nodes are gmeta monitors, which are
symmetrical to each other with no functionally distinct

Root

local clusters

remote clusters (1-level)

S

remote clusters (N-level)

U meteor archive

meteor archive

meteor

nashi archive

nashi

nashi summary

Figure 3: Two wide-area monitor designs.
The 1-level gmeta on the right reports the
union of its children’s data to root. The more
scalable N-level monitor reports a summary
of its children, which lightens the root’s
archiving load.

leaders or slaves. Edges are trusts that allow TCP
connections carrying XML monitoring data to occur.
We manually configure the unidirectional trust edges
such that a child must explicitly trust its parent. Leaf
nodes are clusters running local-area gmon monitors,
and may be attached anywhere in the tree (fig 2).
Monitoring information originates at leaf nodes and is
passed upwards towards the root along the trust edges.

In the design analysis the following symbols are used.
C is given as the number of clusters in the cluster-set to
be monitored. H is the maximum number of hosts in a
cluster, and m represents the number of metrics
monitored per host.

2.1. One-level monitor tree
The simplest organization for a wide-area monitor is to
aggregate all clusters into a one level tree. In this design
the tree root must perform monitoring activities for all
clusters in the set. Early versions of Ganglia have this
design despite their ability to form deeper trees.

Although we may organize a Gmeta monitor into a
hierarchy, the system is not scalable. A node in the
monitoring tree reports the union of its children’s data
to its parent, and will process and archive data for all
clusters in its subtree. Nodes perform no reduction of
monitoring data, forcing the root to bear the brunt of
the data from the entire cluster set. When many clusters
are present, the root may be quickly overwhelmed. In

addition, every monitor between a cluster and the root
will keep identical metric archives for that cluster (fig
3). As metric archiving is a processor-intensive task,
this redundancy is unwanted. As a result this design
does not satisfy the scalability requirement.

However, this design does address the requirements of
remote cluster failures, low impact on monitored
systems, and historical archiving. Remote failures are
handled identically to link failures, and are detected
with TCP timeouts. Since all gmon agents have
redundant global state, stop and intermittent failures of
cluster nodes are handled easily (fig 1). Even in cases
of a complete partition with a cluster, the monitor will
attempt to re-establish contact at a steady frequency,
ensuring that failures do not cause permanent fissures
in the monitoring tree.

Ganglia keeps historical records of data in specialized
time-series databases [11], whose stream-based design
supports a wide range of time scale queries employing
lossy compression with a bias towards recent data.
Therefore we can see a metric’s history over the past
year but with less resolution than if we ask about more
recent behavior. The databases are highly optimized for
this type of data and do not grow in size over time.
With this facility Ganglia records the history of each
numeric metric. If a monitored node has failed, it keeps
a “zero” record during the downtime, aiding time-of-
death forensic analysis.

A previous paper [1] has shown the impact of gmon on
the clusters themselves is negligible even for large
systems. As an example, the monitor on a 128-node
cluster uses less than 56Kbps of network bandwith,
roughly the capacity of a dialup modem.

While we assume that the wide area monitors are run
on nodes that are not immediately in the “compute
bound” pool of a cluster (like gmon), the resource
requirements of gmeta are still of interest. As this
design is susceptible to an overloaded root node, it does
not satisfy the low monitor impact requirement.

The one-level monitoring tree as implemented by this
design addresses three of the five requirements, leaving
out scalability and low monitor impact. Although we
have given only a brief analysis of the scalability
shortcomings, the experimental section provides more
detailed evidence.

2.2. N-level monitoring tree
A straightforward solution to the scalability problem is
to leverage the depth of the monitoring tree. It is
desirable to make each node’s processing load constant,

<GRID NAME=”SDSC” AUTHORITY=”my URL”>
 <CLUSTER NAME=”Meteor”>
 <HOST NAME=”compute-0-0”>
 <METRIC NAME=”cpu_num” VAL=”2” TYPE=”int”/>
 <METRIC NAME=”load_one” VAL=”.89” TYPE=”float”/>
 …
 </HOST>
 <HOST NAME=”compute-0-1”>
 <METRIC NAME=”cpu_num” VAL=”2” TYPE=”int”/>
 <METRIC NAME=”load_one” VAL=”.89” TYPE=”float”/>
 …
 </HOST>
 </CLUSTER>
 <GRID NAME=”ATTIC” AUTHORITY=”my URL”>
 <HOSTS UP=”10” DOWN=”1”/>
 <METRICS NAME=”cpu_num” SUM=”20” NUM=”10” />
 <METRICS NAME=”load_one” SUM=”17.56” NUM=”10” />
 …
 </GRID>
</GRID>

Figure 3: The Ganglia XML language with
GRID tags. Each node in the cluster has
about 30 monitoring metrics, which can also
be user-defined. The nested Attic grid is in
summary form.

independent of the total number of clusters being
monitored. We begin to address this goal by extending
the monitor’s data language to make the tree structure
explicit.

A GRID tag is added to the Ganglia XML language,
where a grid is defined as a collection of clusters and
other grids. When queried, a gmeta defines its subtree
with grid tags for later use by its upstream parents.
Nodes use this new information to determine which
clusters are local and which are remote. We define
local clusters as leaf nodes attached directly to the
node; their output comes directly from gmon. Remote
clusters are instead local to another gmeta. The key
observation is that another monitor is the authority for
the source, and therefore we only need to give it
secondary interest.

Gmeta only keeps numerical summaries of data from
clusters it is not an authority on. This simple hint
conserves resources and reduces response latency
within the monitoring tree.

A cluster or grid summary looks exactly like the data
for a single host except each metric value represents an
additive reduction. This reduction is performed across a
known set of nodes, and the summary explicitly records
the set size. In this way a summary contains enough
information to determine a metric’s sum and mean.
This definition has shown to work well in practice,
although statistics such as standard deviation and
median are not supported.

While nodes report local cluster data at full detail, they
provide only lower-resolution summaries for grids of
remote clusters. By summarizing remote cluster data,
we dramatically reduce the amount of information sent
along edges of the monitoring tree, as well as the local
state required for archiving.

If we let m be the amount of monitoring data for a
single host, the upper bound on the amount of
information any node sends upstream in the tree is
O(m). The savings afforded by the new method are
additive; in the previous design the root node received
all monitoring data, O(CHm), where CHm is the total
number of metrics monitored. A drawback of both
designs is that only numeric metrics can be reliably
summarized. Non-numeric metrics are only visible in
the highest-resolution cluster views.

Each gmeta includes a URL pointer to itself when
queried. Upstream nodes incorporate these authority
pointers with their summary state. Each coarse
summary report includes the URL that hosts a higher

resolution view. By following these pointers, we can
locate the leaf node that possesses a cluster’s data at its
highest resolution. This pointer-based distributed tree
forms the heart of our design. In the next section we
present a strategy to reduce the processing load of the
viewer.

2.3. N-level monitoring tree with efficient
queries

The most common method of viewing the monitor tree
is with Ganglia’s web frontend1. This and other viewers
request raw XML from a gmeta agent and parse it for
display. The processing required to view the tree is
therefore proportional to the size of the XML returned
by the monitor. A problem with past gmeta designs was
overwhelming the web frontend with very large XML
reports. Moreover, when viewing a specific cluster or
host, much of the report is unnecessary. While the N-
level tree design ameliorates the first problem with
compact cluster summaries, the viewer program often
still has to parse unused portions of the XML. The heart
of this inefficiency lies in the reporting tactic of the
monitors: either the entire tree rooted at a monitoring
node is reported, or nothing at all.

We improve the efficiency of viewing applications by
introducing a simple query engine to our monitoring
system. Instead of returning the entire tree rooted at a
node, monitors accept a small path-like query that
specifies a single local subtree to report (fig 4). Low-
latency query response is a primary goal of our design.

1 See http://ganglia.sourceforge.net/ demo section for an
example.

root

sdsc

attic compute-0-0

metrics

Query:
/meteor/compute-0-0/

meteor cluster

Figure 4: Query processing. The SDSC
gmeta is queried for the only the metrics
of node compute-0-0 in the meteor
cluster.

The query engine is designed to keep pace with
Ganglia’s data-hungry web frontend. This presentation
application performs a Ganglia query in the critical path
of each generated web page, making anything but a
low-latency query engine inappropriate.

While we considered several XPath implementations
for this task [12], they proved to be too heavyweight
and inefficient for our purposes. Our intuition was a
simpler query facility could achieve the efficiency gains
we sought.

2.3.1. Parsing and Summarization
To summarize metrics and support queries on the
monitoring data, incoming XML must be parsed.
However to give the fastest query response, we do not
perform this potentially long task at query time. To
insure the most immediate query response in all
situations the N-level gmetad summarizes data “in the
background”, on a separate time scale from query
processing.

The summarization time scale involves downloading
XML data from clusters and computing the summaries.
Gmeta system gathers data from sources at a low
frequency polling interval, generally every 15 seconds,
independent of any query processing. All failure
detection is done at this time scale as well. Gmeta then
parses the new data, and organizes both the contents
and its summary using in-memory structures.

Queries results are based only on the latest fully-parsed
data, making long parsing times relatively insignificant.
If a query arrives during parsing, the previous summary
will be returned. Gmeta is not fully double-buffered,
but has fine-grained locks on its data structures that
enable the parser and query engine threads to operating
at once. This strategy essentially trades some data
freshness for query performance.

2.3.2. Serving Queries
By organizing the parsed monitoring data in a series of
hash tables, we can support very low-latency queries.
Our approach approximates a DOM design [14] where
each XML tag name keys into a hash table, which
contains all tags at a given level in the XML tree. At
any given node this tree is relatively shallow since only
summaries of remote grids are kept. A node must
search at most three hash table levels to find the desired
subtree: data sources, summaries and cluster nodes, and
node metrics (fig 4).

These hash lookups complete in O(1) time, however the
time to dump the actual data takes longer. Serving a

grid or cluster summary takes O(m) time to complete
since summaries are the size of data from a single host.
The time to complete a full-resolution cluster query is
proportional to the cluster size, and takes O(H)
operations. As full-resolution cluster queries are
expensive, we also support a cluster-summary query for
large clusters.

Local cluster summaries are an optimization for the
benefit of the viewing applications. This filter returns a
summary report for a single cluster. While not strictly
necessary, this filter enables the presenting application
to easily switch between a high-level overview and the
full resolution view of a cluster. We have found this
ability useful when examining very large clusters [13]
where the full view can overwhelm the browser’s
processing capacity and must be used sparingly.

Even this simple query support affords much improved
performance for the Ganglia web viewing application,
and we believe this result will generalize to other
clients such as an alarm-detection and notification
application.

3. Experience
In this section we present the experimental setup and
results that quantify the performance of our wide-area
monitor.

Three experiments show the advantages of our N-level
monitoring technique. The first illustrates the
computational scalability and efficiency of the N-level
monitoring tree versus the older 1-level version with a
fixed set of clusters. The second set of results explores
monitoring performance for various cluster sizes. The
final experiment demonstrates the advantages that
XML query support gives to the presenter application.

All experiments employ gmon emulators called pseudo-
gmond to generate controlled Ganglia XML datasets for
the monitoring tree. These agents behave identically to
a cluster’s gmon daemons, except their metric values
are chosen randomly. Their XML output conforms to
the Ganglia DTD, and therefore requires the same
processing effort by the gmeta system under study.
From the gmeta perspective, the only difference
between the real and simulated clusters is the time to
download the XML tree.

By design, the pseudo-gmon agents have more
predictable performance than their real counterparts,
allowing the experiments to discount gmon processing
and XML transit latencies from clusters. Since we are
interested in the performance difference between two

gmetad designs, pseudo-gmonds allow us to remove
unnecessary experimental variables without affecting
the validity of the results.

3.1. Experimental Setup
We conduct all experiments on a 10-node Linux cluster
named Alpha. The cluster has ten homogenous nodes,
each with dual 2.2Ghz Pentium 4 processors, 1GB
RAM, and Gigabit Ethernet networking. Alpha runs the
Rocks clustering software version 2.3.2, which is based
on RedHat Linux 7.3 with kernel version 2.4.18-
27.7.xsmp. The monitoring daemons were compiled
with gcc 2.96, and glibc 2.2.5.

The experiments compare the 1-level gmeta with the N-
level version. The 1-level gmeta is defined as Ganglia
monitor-core version 2.5.1, while the N-level code is
based version 2.5.4, currently in beta testing phase.

Both versions operate in the six-node monitoring tree as
shown in figure 2. The twelve clusters in the tree are
simulated with pseudo-gmons. Percentage CPU
measurements are taken for each gmeta machine, which
are otherwise unloaded. The standard ps command
with an extended time format is used to obtain CPU
timings2. Gmeta nodes store metric archive databases
on a RAM-backed tmpfs file system to eliminate
their disk I/O requirements.

2 The getrusage() system call has trouble taking accurate
measurements of the multi-threaded gmetad daemons.

In order to obtain reliable measurements in the face of
system interrupts and other disruptions, we calculate
CPU usage percentages over a 60-minute timing
window. By employing a large measurement period,
small system interruptions have only a negligible effect
on data points. However, since we emphasize relative
timings rather than absolute ones, a consistent
measurement strategy is more critical than the specific
collection method used.

The third experiment measures the performance of
Ganglia’s web frontend. Mod_PHP version 4.1.2 with
its native SAX XML parser runs this PHP application,
whose pages are served by the Apache webserver
version 1.3.27. The web frontend is run on an unloaded
machine, separate from the gmeta node. Timings in the
are taken with gettimeofday()calls inserted just
before the socket connection to the gmeta agent and
after the completion of the XML parsing.

3.2. Results
To determine scaling benefits of the N-level monitor
over the 1-level design, we measure the CPU utilization
of every gmeta node in the monitoring tree from figure
2. In this experiment, each of the twelve monitored
clusters has 100 hosts. Figure 5 shows the results of this
experiment. Bars in the graph are grouped by gmeta
monitor, and bar heights represent the percentage of
wall-clock CPU time used by the gmeta daemons over
a one-hour period.

In the second experiment we vary the size of the twelve
monitored clusters. Figure 6 shows the aggregate

 0

 2

 4

 6

 8

 10

 12

 14

 16

root ucsd physics math sdsc attic

%
C

P
U

Gmeta Wide Area Monitor

Wide-Area Scalability: Ganglia CPU utilization in Monitor Tree (id=14)

1 level
N level

Figure 5: Wide area scalability results. The x-axis
shows CPU% used by the each gmeta monitor in
the monitoring tree from figure 2. N-level is the
new gmeta design that reports cluster
summaries to its parent.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 50 100 150 200 300 400 500

A
gg

re
ga

te
 %

C
P

U
 o

ve
r 6

 g
m

et
a

no
de

s

Cluster Size (nodes)

Wide-Area Scalability: Aggregate CPU utilization in Monitor Tree (id=14)

1 level
N level

Figure 6: Changing cluster sizes. The monitoring
tree is kept unchanged, while the size of the 12
monitored clusters increases. The y-axis is the
sum of the CPU utilization across all gmeta
nodes.

percentage CPU utilization over all gmeta nodes in the
tree. To find each point, we collect the percent CPU
used by each gmeta as in the previous experiment, sum
them together and divide by 6, the number of gmeta
nodes in the tree. The data point at cluster size 100
represents the sum of all bars in the first plot (fig 5). All
monitored clusters have the same number of hosts, and
care was taken to ensure the gmon cluster simulators
had similar query latencies for all sizes.

The final experiment measures the benefit of the
subtree query engine in the N-level design. Timings are
taken from the perspective of Ganglia’s web viewing
application and appear in table 1. Each value represents
the time needed by the viewer to download and parse
the XML from a gmeta agent in the monitoring tree.
The viewer presents the tree in three central ways. The
meta view summarizes all monitored clusters. The
cluster view describes one cluster at full-resolution, and
the host view shows all information known about a
single host. We calculate the speedup row in table 1 as
the 1-level time / N-level time for each view.

We point the viewer at the sdsc gmeta node for this test
where the clusters have 100 hosts each, similar to the
first experiment. All pages are generated from a single
gmeta query, and each value in table 1 is the average of
five samples.

3.3. Discussion
The first experiment examines the scalability of the N-
level design relative to the 1-level monitor. In a
scalable design, we expect to see load transferred from
the root node in the monitoring tree downwards
towards the leafs, and a general evenness of work
throughout the tree. Such behavior would indicate the
hierarchy is effectively distributing load, and the
system is scalable.

The results show the 1-level design concentrates load at
the root of the monitoring tree (the root and ucsd
monitors) as expected. The N-level monitor pushes this
computation towards the leaf nodes. Leaf gmeta
daemons pay a summarization penalty in the new
design, as seen by the higher bars in figure 5. We argue
that the work required to process raw cluster data is
acceptable when done at the lowest tree level. Non-leaf
monitors clearly benefit from this summary processing;
their load is drastically reduced compared to their l-
level counterparts. The transfer of processing load
suggests the N-level monitor is indeed more scalable
than the 1-level design.

The second experiment illuminates how a monitoring
tree responds to different cluster loads. The N-level

design scales linearly with a low slope when we
increase the size of the monitored clusters. The 1-level
version exhibits a higher-sloped scaling behavior that
appears linear, but actually has a slight upward curve.
This non-linear behavior is caused by overloading the
root node and duplication of metric archives.

The 1-level design is limited by the processing ability
of the root node. As it gets saturated with load, the root
gmeta begins to slow down. Threads must wait in run
queues as spare cycles become scarce, and the percent
CPU utilization becomes non-linear with respect to
smaller runs. Moreover, adding nodes to the monitoring
tree will not alleviate this problem, as shown in the first
experiment. The N-level design distributes load more
evenly across the tree as shown in the first experiment.
By not saturating its root node, the N-level monitor
maintains a linear scaling in this experiment.

The results of this experiment show effects other than
the load transfer between nodes in the tree. In all data
points the aggregate CPU usage is less for the N-level
monitor. This result is due to redundancy in the system,
specifically superfluous metric archives (fig. 3). Nodes
in the N-level monitoring tree keep only summary
archives of descendants rather than full duplicates,
yielding a near-linear increase in archive state, and
lowering the total amount of work performed by the
system.

The third experiment focuses on the new query support
in our design. While a 1-level viewing application must
receive a full tree from its gmeta agent, the N-level
viewer can request a particular XML sub-tree. The host
view in particular benefits from this facility. The 1-
level viewer must parse and discard much of the data it
receives. For example if we choose to view a single
host of cluster A, the viewer must parse and discard
data about all other hosts in the cluster. As a result we

Meta Cluster Host

1-level 2.091 2.093 2.096

N-level .0092 .198 .003

Speedup 227 10.5 698

Table 1: Time (in sec) for the web frontend to
query and parse Ganglia XML from the sdsc
gmeta node. The columns represent various
web views. The rows are experimental runs.

see that the N-level delivers a large performance gain in
this view by reducing the parsing load of the presenter.

The web frontend used in the 1-level design generates
its own summaries for the meta view, while the N-level
viewer obtains its summaries directly from the gmeta
daemon. Correspondingly, table 1 shows a large gain
for the N-level meta view. The parsing load of the full-
resolution cluster view is similar for the two monitor
designs. We note that no distinction is made between
the time to download the XML and the time needed to
parse it. However the relatively small XML trees
involved (<1MB in all cases) and the dedicated high
speed Gigabit Ethernet connections used suggest that
the downloading time is dominated by TCP startup and
does not vary significantly with the size of the XML.

All code used in these experiments is available upon
request.

4. Limitations and Future Work
A major limitation to our wide-area monitor design is
the difficulty of constructing the tree hierarchy. While
the local gmon system needs no a priori knowledge of
cluster nodes, the gmeta design lacks this advantage.
We would like to incorporate a wide-area trust model
similar to MDS, where parents have no explicit
knowledge of their children. Children in an MDS tree
periodically send join messages to their parents, who
verify trust via a cryptographic certificate sent with the
message. Nodes are automatically pruned from the tree
if their join messages cease.

The MDS design has a self-organizing structure that
makes it easier to deploy and maintain, and its soft-state
techniques mirror Ganglia’s local-area gmon monitor.
This extension of gmeta remains as future work.

While our wide-area monitor provides efficient access
to monitored data, it has no mechanism to process it at
a pragmatic level. We would like to implement a
general alarm mechanism that tracks the data and
automatically identify situations that should be relayed
to a human observer. This feature will become
increasingly important as the size of the monitor tree
grows. Such an alarm system may require a more
detailed query mechanism than we currently provide. A
richer query language based on regular expressions is
planned for next version of Ganglia.

The way we currently employ the metric archiving
tools is not scalable with the number of numeric
metrics gathered per host. Although the RRD time-
series database system is efficient, Gmeta’s use of them

leads to a performance bottleneck. Specifically, our
archiving technique makes too many updates to the file-
based databases, causing unnecessary disk I/O. We
believe in future designs gmeta can manipulate its RRD
databases in a more efficient manner.

5. Conclusion
In this paper we presented techniques for monitoring
multiple clusters over wide-area networks, and have
conducted experiments to quantify our performance
claims. We have introduced three straightforward
strategies that lead to significant increases in the
performance of our wide-area monitor. Our N-level
design organizes clusters and monitors them in a
distributed hierarchical tree structure. This hierarchy
provides a scalable backbone for the system. Each node
in the tree shares the processing load by providing
distilled summaries of monitoring data to its parent.
The experimental results show these summaries not
only reduce load on the system, but also enable a useful
multiple-resolution view of the tree. Finally, we have
demonstrated that by supporting a simple query
language, the efficiency of presentation applications
can be much improved.

Experience with computational clusters shows that
effective monitoring is an essential utility for day-to-
day operation. The summarization and query techniques
of Ganglia’s wide-area gmeta monitor open the door for
large monitoring grids that can hopefully enable a more
cooperative and reliable computing environment in our
field.

Acknowledgements
This paper has benefited from conversations, critiques,
and code from many people. In particular we would
like to thank Eric Fraiser, Phil Papadopoulos, and Greg
Bruno for their insight and support, and Jason Smith,
Steven Wagner, Martin Knobloch, and Phillip Radden
for their code contributions and comments.

References
 1. M. Massie, B. Chun, D. Culler. The Ganglia
Distributed Monitoring System: Design,
Implementation, and Experience. Pending publication,
2003.
 2. M. Sottile, R. Minnich. Supermon: A high-speed
cluster monitoring system. In Proceedings of IEEE
Cluster Computing, Chicago IL, Sept 2002.
 3. NCSA Cluemon. http://clumon.ncsa.uiuc.edu/doc-
info.html

 4. SGI Performance Co-Pilot product information.
http://www.sgi.com/software/co-pilot/
 5. The TeraGrid Project. http://www.teragrid.org/, 2001.
 6. J. Halpern and Y. Moses, Knowledge and common
knowledge in a distributed environment. Proceedings
of the 3rd Annual Symposium on Principles of
Distributed Computing, pp. 50#61, 1984.
 7. J. Jiao, S. Naqvi, D. Raz, and B. Sugla. Towards
Efficient Monitoring. IEEE Journal on Selected Areas
in Communications, 18(5), April 2000.
 8. M. Dilman and D. Raz. Efficient reactive monitoring.
In proceedings of IEEE INFOCOM, Alaska, April
2001.
 9. Ganglia VO / WorldGrid Installation Guide.
http://people.cs.uchicago.edu/~cldumitr/soft/moni/doc
s/
 10. R. Wolski, N. Spring, and J. Hayes. The Network
Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing.
Journal of Future Generation Computing Systems,
15(5-6):757--768, October 1999.
 11. The RRDtool time-series data archiving system.
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
 12. World Wide Web Consortium. XML Path Language
(XPath). Version 1.0. W3C Recommendation.
November 16, 1999. http://www.w3.org/TR/xpath
 13. The 2000-Node Dell Cluster at the Center for
Computational Research, University of Buffalo.
http://www.ccr.buffalo.edu
 14. A. Le Hors and P. Le Hegaret and G. Nicol and J.
Robie and M. Champion and S. Byrne. Document
Object Model (DOM) Level 2 Core Specification
Version 1.0. W3C Recommendation, 2000.
 15. S. Raman, S. McCanne. A Model, Analysis, and
Protocol Framework for Soft State-based
Communication. Proceedings of ACM SIGCOMM,
1999.
 16. M. Katz, P. Papadopoulos, G. Bruno. Leveraging
Standard Core Technologies to Programmatically
Build Linux Cluster Appliances. CLUSTER 2002:
IEEE International Conference on Cluster Computing.
April 2002.
 17. T h e R o c k s C l u s t e r R e g i s t e r .
http://www.rocksclusters.org/rocks-register/
 18. S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, and S. Tuecke. A Directory
Service for Configuring High-Performance
Distributed Computations. volume Proc. 6th IEEE
Symp. on High-Performance Distributed Computing,
pages 365--375, 1997.
 19. The Globus Project. http://www.globus.org/
 20. S. Agarwala, C. Poellabauer, J. Kong, K. Schwan,
and M. Wolf. Resource-Aware Stream Management

with the Customizable dproc Distributed Monitoring
Mechanisms. Proc 12th IEEE International Symp. on
High Performance Distributed Computing (HPDC-
12), Seattle, Washington, June 2003.

