
Leveraging Standard Core Technologies to Programmatically Build Linux
Cluster Appliances

Mason J. Katz, Philip M. Papadopoulos, Greg Bruno
The San Diego Supercomputer Center

University of California San Diego
La Jolla, CA 92093-0505

[mjk,phil,bruno]@sdsc.edu
http://rocks.npaci.edu

Abstract

Clusters have made the jump from lab prototypes to full-
fledged production computing platforms. The number, va-
riety, and specialized configurations of these machines are
increasing dramatically with 32 – 128 node clusters being
commonplace in science labs. The evolving nature of the
platform is to target generic PC hardware to specialized
functions such as login, compute, web server, file server,
and a visualization engine. This is the logical extension
to the standard login/compute dichotomy of traditional Be-
owulf clusters. Clearly, these specialized nodes (hence-
forth “cluster appliances”) share an immense amount of
common configuration and software. What is lacking in
many clustering toolkits is the ability to share configuration
across appliances and specific hardware (where it should be
shared) and differentiate only where needed. In the NPACI
Rocks cluster distribution, we have developed a configu-
ration infrastructure with well-defined inheritance proper-
ties that leverages and builds on de facto standards includ-
ing: XML (with standard parsers), RedHat Kickstart, HTTP
transport, CGI, SQL databases, and graph constructs to
easily define cluster appliances. Our approach neither re-
sorts to replication of configuration files nor does it require
building a “golden” image reference. By relying on this de-
scriptive and programmatic infrastructure and carefully de-
marking configuration information from the software pack-
ages (which is a bit delivery mechanism), we can easily han-
dle the heterogeneity of appliances, easily deal with small
hardware differences among particular instances of appli-
ances (such as IDE vs. SCSI), and support large hardware
differences (like x86 vs. IA64) with the same infrastruc-
ture. Our mechanism is easily extended to other descrip-
tive infrastructures (such as Solaris Jumpstart as a backend
target) and has been proven on over a 100 clusters (with
significant hardware and configuration differences among

these clusters).

1. Introduction

Within the last decade, the Network of Workstations [5]
and Beowulf [11] models of COTS clustering have made
substantial gains in the HPC marketplace previously held
by single vendor supercomputers. This trend shows no sign
of slowing, and Linux-based clusters are paving the way on
the Grid in the form of efforts such as NSF’s Distributed
Terascale Facility [1]. As commodity clusters scale out
and challenge traditional big-iron supercomputers, a new
model of software configuration is needed to accommo-
date the heterogeneity that creeps into the system as com-
ponents fail, subsystems are upgraded, and application re-
quirements change. Existing techniques of system imaging
and description-based installation (e.g., RedHat’s Kickstart)
fail to accommodate the innate heterogeneity of large-scale
clusters and require forking either along the lines of disk
and file system images or Kickstart files. Although the for-
mer is much harder to manage in terms of sheer disk space
requirements, the later isn’t much better. A primary goal of
managing the software configuration of a cluster should be
to avoid replication of components and configuration. Cur-
rently, neither system imaging nor Kickstart possess this
property.

Our previous version of NPACI Rocks clustering soft-
ware (version 2.0) leveraged RedHat’s Kickstart utility to
manage the software and configuration of all nodes. We
enhanced Kickstart to use the C pre-processor as a macro
language and extracted site configuration variables from an
SQL database. Using these tools we were able to use a sin-
gle source file to describe multiple node configurations, but
we still required two separate source files – one for describ-
ing the frontend node of the cluster and another for compute

nodes. Although this successfully decoupled node-specific
configuration from generic node configuration, there was
still replication in the Kickstart files between compute node
and frontend configurations. At the time, this was a reason-
able compromise as we felt a cluster would only have two
node types (frontend and compute). We’ve since realized a
cluster has many node types (hereafter referred to as “appli-
ance types” or “appliances”). Although our implementation
had several desirable features, it ultimately proved too awk-
ward and rife with subtleties injected from the ad hoc nature
of the design.

Our solution is to decompose the configuration of a clus-
ter into “appliances” where each appliance is composed of
several small single-purpose configuration modules. Fur-
ther, all site- and machine-specific information is managed
in an SQL database to allow these configuration modules
to be shared between cluster nodes and cluster sites. For
example, a single module is used to describe the software
components and configuration of the ssh service. Cluster
appliance types which require ssh are built with this mod-
ule. A single object-oriented framework is used to build the
module hierarchy, resulting in multiple cluster appliances
constructed from the same core software and configuration
description. This framework is composed of XML files and
a Python engine to convert component descriptions of an
appliance into a RedHat compliant Kickstart file.

2. Related Work

• SystemImager - SystemImager [8] is a Linux software
installation tool that stores a system’s operating envi-
ronment (e.g., OS, tools, libraries and configuration)
at the file-level, that is, the installation server holds an
image of the entire directory structure for a configura-
tion.

This is opposed to bit-level installation tools that store
bit images (e.g., a copy of the bits on a disk, usually the
output of dd). A file-level imager has advantages over
bit-level imagers in that small changes to files only re-
quire the changed files to be transferred to the imaged
nodes rather than the entire disk image. In SystemIm-
ager, local node software configuration comes in the
form of leveraging DHCP, adding values to a machine
specific local.cfg file, or by augmenting the instal-
lation script (autoinstall script).

If a cluster has heterogeneous hardware, that is, if all
the nodes don’t have the same installed hardware, Sys-
temImager supports each hardware platform by storing
a unique image of the directory structure for each hard-
ware type. Cluster node configuration for a specific
hardware configuration is managed by first installing
one node in the cluster, logging into the node and con-

figuring the software by hand, then taking a snapshot
of the node (i.e., creating a master node). Conversely,
in description-based methods, cluster node configu-
ration is specified a priori. Hardware and software
configuration can be supported by providing unique
descriptions for each hardware/configuration type or
by engineering a method that examines nodes and
programmatically adapts the local node configuration
based on the node’s unique characteristics.

• Cfengine - Cfengine [6, 7] is a policy-based config-
uration management tool that can configure UNIX or
NT hosts. After the initial operating environment is
installed by hand or another tool (cfengine doesn’t in-
stall the base environment), cfengine is used to in-
stantiate the initial configuration of a host and then
keep that configuration consistent by consulting a cen-
tral policy file. The central policy file is written in
a cfengine-specific configuration language (which re-
sembles makefile syntax) that allows an administrator
to define the configuration for all hosts within an ad-
ministration domain. Each cfengine-enabled host con-
sults this file to keep its configuration current.

To deal with hardware and software heterogeneity,
cfengine defines classes to delineate unique character-
istics.

• x-Kernel - The x-kernel [9] is a network operat-
ing system which decomposes traditionally mono-
lithic network stacks into simple single-purpose micro-
protocols. In addition to these micro-protocols, a sin-
gle graph file describes the relationships of the proto-
cols in the context of a network stack. It is this de-
composition of network stacks into a bag of protocols
and a single graph file to instantiate a specific network
service that made the x-kernel an attractive platform
for exploring ideas within network systems research.
The authors describe the novelty of the x-kernel as an
attempt to apply pragmatic software engineering meth-
ods in the form of program encapsulation, re-usability,
and composibility to the problem domain of network
stacks[10].

Along these lines, our work has applied simple soft-
ware engineering techniques to the problem domain of
system software configuration. Further the distinction
between a bag of micro-protocols and a single descrip-
tion of the protocol framework is analogous to our con-
cept of single purpose configuration nodes and a con-
figuration graph.

• RedHat’s Kickstart - RedHat has written a sophis-
ticated, customizable script which automates pack-
age installation from RedHat distributions called Kick-
start [3]. Nodes installed in this manner are driven by a

url --url http://10.1.1.1/install/i386
zerombr yes
clearpart --all
part / --size 4096
lang en_US
keyboard us
mouse genericps/2
timezone --utc GMT
skipx
install
reboot

%packages
@Base
pdksh

%post
cat > /etc/motd << ’EOF’
Kickstarted on ‘date‘
EOF

Figure 1. Sample RedHat Kickstart file.

user-created configuration file that essentially contains
the answers to all the questions posed by a standard in-
teractive installation. Figure 1 presents a sample Kick-
start file. The file has three sections: command, pack-
age, and post. The command section contains almost
all the answers posed by an interactive RedHat instal-
lation (e.g., location of the distribution, disk partition-
ing parameters and language support). The packages
section lists the names of RedHat Packages (RPMs) to
be installed on the machine. Finally, the post section
contains scripts which are run during the installation to
further configure installed packages.

While a Kickstart file is a text-based description of all
the software packages and software configuration to be
deployed on a node, it is static and monolithic. At best,
this requires separate Kickstart files for each host type.
At worst, this requires a separate file for each host. The
success of Kickstart is in providing a de facto stan-
dard for installing software and performing the system
probing required to install and configure the correct de-
vice drivers on a per machine basis.

• LCFG - A project that is closely aligned with
the methods described in this paper is the LCFG
project [4]. Anderson and Scobie have designed a sys-
tem around the observations that node configurations
change often, that configuration information needs to
be stored independently of the host systems and that
handling automated installation and configuration for
heterogeneous clients (from large servers to laptops)
in an evolving environment using a single method is
desirable.

Both LCFG and our method use a collection of source

files, with each source file dedicated to configuring ex-
actly one service - to generate a tailored configuration
file for a host. Both rely on a central database to assist
in the application of node-specific information to the
resulting configuration file. Both also have a notion
of inheritance to leverage source file reuse for similar
machine types.

LCFG differs from our method in that inheritance
is supported in LCFG through file inclusion (e.g.,
#include). Our first implementation also used file
inclusion, but we evolved this to a graph structure
which has proven to be simpler and more powerful
due to the structured nature of the resultant Kickstart
configuration file. LCFG also employs a proprietary
configuration language for their source files. A cus-
tom profile compiler is used to combine the source files
into single XML profile. Our method uses XML as
the structure for the source files. LCFG doesn’t use
Kickstart to install the operating environment. Rather
it uses its own boot environment to configure the ma-
chine (e.g., to detect the hardware, partition the disk,
install RPMs). We leverage Kickstart’s extensive hard-
ware probing and configuration mechanisms in order
to support a wide-range of hardware platforms without
having to develop code.

3. Component based configuration

The key pieces missing from Kickstart are a macro lan-
guage and a framework for code re-use. The former can be
solved with the C pre-processor #define directives. The
later can be solved by breaking Kickstart files into modules
and using the C pre-processor to allow modules to include
others to build complexity. Although this will minimally
solve the problem, this implementation proves unwieldy
and results description files which are difficult to read and
maintain.

The success of our initial cpp approach was in decom-
posing the monolithic Kickstart file into dozens of small
modules of dedicated functionality. For example, a single
file contained the Kickstart commands for installing and
configuring a web server. The failure was the level of ef-
fort required to support this structure. There was a need for
a structured, standard representation of these modules. This
same problem is evident in C software which is structured
in an object-oriented manner but must invent its own mech-
anisms to support object-oriented concepts (as opposed to
writing software in a language that directly supports object-
oriented methodologies, like C++). In this vein, XML of-
fers a structured representation for the Kickstart modules.
In addition, XML opens the door to de facto standards for
parsing data, allowing us to focus on engineering appropri-
ate software components, and not on parsing.

Figure 2. Kickstart Graph.

Once the functionality of a system is broken into small
single-purpose modules, a framework describing the inher-
itance model is used to derive the full functionality of com-
plete systems, each of which shares common base config-
uration. Figure 2 is a representation of such a framework
which describes the configuration of appliances in a Rocks
cluster. The framework is a directed graph – each vertex
represents the configuration for a specific service (software
package(s), service configuration, local machine configura-
tion, etc.) Relationships between services are represented
with edges. At the top of the graph there are four vertexes
which indicate the configuration of a “laptop”, “desktop”,
“frontend”, and “compute” cluster appliance. The full de-
scription an appliance is built by traversing the graph, start-
ing with the appliance, thereby inheriting all the functional-
ity which is shared across other appliances.

The framework is composed of a single graph file and
nearly a hundred configuration modules. The graph file
specifies the framework hierarchy, and the configuration
modules (also called ”nodes”) each specify a distinct piece
of system configuration.

3.1. Graphs

The traditional object-oriented model of inheritance re-
quires objects to specify their ancestor. In C++ this is ex-
plicitly done in the class declaration of an object. How-
ever, one of the most difficult problems in object-oriented
design is the specification of the inheritance model for all
the objects. This is a difficult problem for even small class
libraries. In the case of Kickstart nodes, we have nearly one
hundred unique nodes in our framework. As cluster users

laptopdesktop

pcmcia

standalone

<graph>
<edge from="desktop" to="standalone"/>
<edge from="laptop" to="standalone"/>
<edge from="laptop" to="pcmcia"/>

</graph>

Figure 3. Specifying minor configuration dif-
ferences with inheritance.

scripting

tcl-developmentperl-development python-development

<graph>
<edge from="scripting" to="perl-development"/>
<edge from="scripting" to="python-development"/>
<edge from="scripting" to="tcl-development"/>

</graph>

Figure 4. Building compositional configura-
tion objects.

invent new ideas for cluster appliance types, a fixed frame-
work of these nodes becomes a problem. If the relationship
between two nodes in the configuration graph is incorrect
for a new appliance type, the power of an object-oriented
framework is lost.

To solve the problem of finding the correct class hierar-
chy, we avoid it altogether. Individual nodes do not specify
their ancestor nodes. Rather the inheritance model is speci-
fied out-of-band in a separate XML graph file. This allows
for a default framework which works for the appliances we
need while allowing our users to invent their own frame-
works. Our goal has been to provide the structure to effec-
tively build computational clusters in the style we currently
recommend, while keeping the door wide open for radically
different clustering (or non-clustering) configuration ideas.
Along these lines, we have designed a system which invites
experimentation while still providing a simple and complete
default HPC cluster configuration.

ia64i386

base

lilo elilo

<graph>
<edge from="base" to="lilo" arch="i386"/>
<edge from="base" to="elilo" arch="ia64"/>

</graph>

Figure 5. Handling architecture differences
with conditional inheritance.

Figure 3 shows a small section of the graph from Figure
2. In this example, the “desktop” and “laptop” appliance
types both inherit from a “standalone”, yet a singular differ-
ence of “laptop” inheriting from “pcmcia” insures support
for the PCMCIA bus which desktops do not have. Like-
wise, the XML representation is a subset of the XML used
to describe Figure 2. In addition to building appliances,
nodes can be used to collect related functionality into a sin-
gle entity. Figure 4 shows a single “scripting” node built by
inheriting from nodes for all the common UNIX scripting
languages.

In addition to simple inheritance, the graph supports con-
ditional inheritance based on a machine’s system architec-
ture. When a Kickstart file is built for a machine, the CPU
architecture is specified. By annotating the edges of the
graph with an “arch” attribute, a single framework supports
the configuration of cluster appliance types for multiple ar-
chitectures. Figure 5 shows how the “base” node in the
graph inherits either “lilo” or “elilo” depending on whether
the target machine is an x86 or Itanium. This feature of
the graph embraces, rather than rejects, heterogeneous ar-
chitectures thereby allowing the system architect to work at
the appropriate level of abstraction. We’ve found this to be
one of the more interesting features of the system. By ex-
ploiting this feature, a single core set of software has been
used to support x86 and IA64 releases of Rocks.

3.2. Nodes

Each node in the graph corresponds to a single XML
file. The tags correspond directly to RedHat Kickstart key-
words. An XML representation is used to provide a simple
and standard grammar for the file. Further, XML provides
simple macros in the form of entities and allows us to define
our own more powerful macros.

Figure 6 shows the XML file for an “ssh” node in the

<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "dtds/node.dtd"
[<!ENTITY ssh "openssh">]>
<kickstart>

<package>&ssh;</package>
<package>&ssh;-clients</package>
<package>&ssh;-server</package>
<package>&ssh;-askpass</package>

<!-- Required for X11 Forwarding -->
<package>XFree86</package>
<package>XFree86-libs</package>

<post>
<!-- default client setup -->
cat > /etc/ssh/ssh_config << ’EOF’
Host *

CheckHostIP no
ForwardX11 yes
ForwardAgent yes
StrictHostKeyChecking no
UsePrivilegedPort no
FallBackToRsh no
Protocol 1,2

EOF
</post>

</kickstart>

Figure 6. The ssh.xml node includes the ssh
packages and configures the service in the
Kickstart post section.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "dtds/node.dtd">
<kickstart>

<main>
<lang><var name="Kickstart_Lang"/></lang>
<keyboard><var name="Kickstart_Keyboard"/></keyboard>
<mouse><var name="Kickstart_Mouse"/></mouse>
<timezone><var name="Kickstart_Timezone"/></timezone>
<rootpw>--iscrypted <var name="RootPassword"/></rootpw>
<install/>
<reboot/>

</main>
</kickstart>

Figure 7. The base.xml node configures the
main section of the Kickstart file

graph. This node has a single purpose - to describe the pack-
ages and configuration associated with the installation of the
ssh service and client on a machine. The package and post
XML tags map directly to Kickstart keywords. The “ssh”
node also makes use of an XML entity as a simple macro
to set the ssh prefix to openssh (as opposed to ssh, which
RedHat supported prior to their 7.1 release).

Although simple macros are quite powerful, we needed
a method of isolating site and individual cluster host state
from the generic configuration description. The configu-
ration can be thought of as the program which is used to
configure a set of software. This program has state, which
represents a single instantiation of a cluster appliance. Our
approach is to store this state in an SQL database and al-
low the XML configuration code to reference these vari-
ables. Figure 7 shows the XML for a “base” node in the
graph. This node configures much of the command section
of a Kickstart file, such as the language, timezone, and key-
board. Rather than specifying this state in the XML file,
the var tag is used to reference it. Unfortunately the current
semantics of entities in XML proved insufficient to allow
them to be used for this purpose. Hence, the additional var
tag was invented.

In cases where var tags cannot completely represent the
machine state variables, an eval tag can be used. Eval state-
ments are used to evaluate arbitrary expressions with the
resultant values replacing the eval section. The eval tag
should not be viewed merely as an escape hatch to the con-
finements of the XML framework, but rather as a method of
making a Turing machine available for computing machine-
specific configuration. We’ve used this feature to intelli-
gently allow a host to determine its own optimal disk par-
titioning scheme, and to support complex SQL queries that
did not map to the simple key/value pairs supported by the
var tag.

4. System Architecture

4.1. Components

• Anaconda - Anaconda is the name of the UNIX pro-
cess for RedHat’s Kickstart client. Each machine in the
cluster runs this client from a floppy, cdrom, hard disk,
or PXE boot. The Anaconda process requests a Kick-
start file (either locally from the installation media or
over the network, for example HTTP or NFS), parses
the keywords from the file and executes the appropriate
commands to completely configure the software instal-
lation of the machine. Once Anaconda completes, the
machine reboots and becomes a functioning member
of the cluster.

• CGI - Rocks uses a web CGI script to serve Kickstart

Anaconda CGI KPP SQL
Database

KGen

Request Red Hat Kickstart File

Request Appliance Name

Appliance Name

Request XML Kickstart File

Request Configuration Variables

Configuration Variables

XML Kickstart File

XML Kickstart File

Red Hat Kickstart File

Red Hat Kickstart File

Figure 8. Kickstart space-time diagram.

files to Anaconda clients. When a node installs, it re-
quests its Kickstart file using HTTP. The node con-
structs the URL by combining information from the
DHCP response and node-specific information (e.g.,
hard disk name(s) and architecture type). An example
URL for a x86-based node with two SCSI disks is:

http://frontend-0/install/kickstart.cgi?
devnames=sda,sdb&arch=i386

The CGI script coordinates the creation of a Kickstart file by
extracting node-specific fields from the query component of
the URL, querying the SQL database, and passing these val-
ues into subsequent programs - KPP (generates a monolithic
XML file from XML-based components) and KGen (trans-
forms the monolithic XML file into a valid RedHat Kickstart
file). The CGI script takes the output of KGen and streams it
back to the installing node.

• SQL Database - The configuration database stores informa-
tion about the cluster as a whole and information about spe-
cific machines and groups of machines.

• KPP - The Kickstart Pre-Processor traverses the configura-
tion graph, requests machine state from the SQL configu-
ration database and builds a single monolithic XML-based
Kickstart file for a specific cluster node.

• KGen - The Kickstart Generator transforms an XML Kick-
start file into RedHat Kickstart syntax. This additional step
exists to allow future formats to be used. For example, it
should be possible for another generator to produce Solaris
JumpStart files.

4.2. Process

Figure 8 illustrates the process of a machine requesting
and receiving its Kickstart file. First, the Anaconda process
issues an HTTP request of the Kickstart file, which triggers
the CGI script. This script interrogates the configuration
database to determine which appliance type should be in-
stantiated on the machine and requests an XML Kickstart
file for the specific machine and appliance type from the
Kickstart Pre-Processor. 1 KPP interrogates the configura-
tion database for machine-specific configuration variables
to resolve the XML var tags in the node file, then graph
traversal starts at the appropriate appliance node and KPP
builds a single machine specific XML Kickstart file which
is returned to the requesting CGI script. Finally, the CGI
script invokes the Kickstart Generator to convert the XML
syntax into native RedHat Kickstart supported syntax.

The end result is that the Anaconda process is unaware
that a dynamic system generated the Kickstart file and be-
haves as if it had received a standard static Kickstart file.
This simple fact allows us to leverage all of RedHat’s ef-
forts, while adding the necessary power to program the be-
havior of a cluster.

5. Future Work

The visualization of the configuration graph has proved
to be one of the most compelling pieces of this work.2 The
visualization has shown us that the model of a graph makes
system configuration highly accessible to users and should
be the interface for system configuration. We would like
to leverage existing drawing packages to draw the relation-
ships between nodes and make clicking on an individual
node bring up an editor window for modifying the corre-
sponding XML file. In this fashion, the metaphor of the
graph would never be hidden from the system architect.

We also want to apply this configuration graph to other
problems. Currently only the initial Kickstart software de-
ployment is described in the framework. The same frame-
work should be able to describe system auditing, verifica-
tion, and dynamic system configuration. In this manner the
graph can be applied to configuring intrusion detection tools
(e.g., Tripwire [2]) and cfengine-like tools.

Finally, we are interested in applying this to other op-
erating systems which support description-based software
installation. Solaris JumpStart is the obvious target, but fu-
ture releases of Windows may also fit into the model.

1This architecture also supports the client machine telling the CGI what
appliance type it wishes to become. We envision exploiting this feature
to build clusters of machines which autonomously re-tool themselves as
different appliance types to meet the dynamic demands on the cluster.

2Graph images are drawn using the dot command from the graphviz
package from AT&T. When invoked without an appliance type, KPP out-
puts a dot-compliant file rather than an XML Kickstart file.

6. Conclusions

Description-based software deployment has been a dra-
matic leap forward over past bit-level and filesystem-level
cloning. Description-based installation provides the appro-
priate level of abstraction to support hardware heterogeneity
and makes the explicit distinction between two orthogonal
concepts – software component names and software com-
ponent versions.

Although RedHat Kickstart provides these benefits, it
has many of the pitfalls of traditional system cloning in that
it does not provide the necessary programmability to avoid
code replication, which is often a pitfall of software engi-
neering efforts. By applying standard software engineering
concepts in the form of a simplified object-oriented frame-
work, we have added programmability to Kickstart to build
multiple variants of cluster appliances on heterogeneous ar-
chitectures without replicating common appliance configu-
rations.

References

[1] Distributed Terascale Facility to Com-
mence with $53 Million NSF Award.
http://www.nsf.gov/od/lpa/news/press/01/pr0167.htm.

[2] Tripwire. http://www.tripwire.org/.
[3] Red hat linux 7.1: The official red hat linux customization

guide. http://www.redhat.com/docs/manuals, 2000.
[4] P. Anderson and A. Scobie. LCFG: The next generation. In

UKUUG Winter Conference, 2002.
[5] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for

networks of workstations: NOW. IEEE Micro, Feb. 1995.
[6] M. Burgess. Cfengine a site configuration engine. volume 8.

USENIX Computing Systems, 1995.
[7] M. Burgess. Recent developments in cfengine. The Hague,

2001. Unix.nl Conference.
[8] B. E. Finley. VA SystemImager. In Proceedings of the 4th

Annual Linux Showcase and Conference, Atlanta, GA, Oct.
2000.

[9] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An ar-
chitecture for implementing network protocols. IEEE Trans-
actions on Software Engineering, 17(1):64–76, 1991.

[10] S. O’Malley and L. Peterson. A dynamic network architec-
ture, 1992.

[11] T. L. Sterling, J. Salmon, D. J. Becker, Savarese, and D. F.
Savarese. How to Build a Beowulf: A Guide to the Imple-
mentation and Application of PC Clusters. MIT Press, 1999.

