
   

411 on Scalable Password Service 

Federico D. Sacerdoti, Mason J. Katz,  

Phillip M. Papadopoulos 

San Diego Supercomputer Center 

{fds, mjk, phil}@sdsc.edu 

 

 

Abstract 

In this paper we present 411, a password distribution 

system for high performance environments that 

provides security and scalability. We show that existing 

solutions such as NIS and Kerberos do not provide 

sufficient performance in large, tightly coupled systems 

such as computational clusters. Unlike existing single-

signon services, the 411 design removes the need for 

communication during password lookup by using 

aggressive replication techniques. We demonstrate the 

use of shared keys to efficiently protect user 

information, and the careful management of system 

wide consistency and fault tolerance.  A theoretical 

analysis of the behavior of 411 is matched with 

quantitative evidence of its performance and suitability 

to a clustered environment. We further show the system 

effectively responds to stress by simulating 50% 

message loss on a 60-node cluster. This protocol is 

currently used worldwide in hundreds of Rocks-based 

production systems to provide password and login 

information service. 

1. Introduction 

Distributing sensitive information such as passwords 

across a set of N connected nodes is a fundamental need 

for any coupled set of machines. Existing methods are 

often insecure, not scalable as N grows large, or both. 

While the security issue is obvious and pervasive, the 

performance shortfall is particularly evident in 

computational clusters, where many machines wish to 

obtain login information approximately in parallel. The 

goal of the 411 system presented in this paper is to 

provide security in this performance-sensitive 

environment.  

NIS [7, 11] is the oldest and most established protocol 

for serving UNIX passwords. Despite being the de facto 

standard it has two important drawbacks, security and 

scalability. Security is addressed in NIS derivatives and 

by the mature Kerberos protocol [9]. Scalability is a 

more subtle but critical problem for this work. NIS is a 

centralized protocol where each lookup involves a 

query to a master node. This design works acceptably in 

loose-knit environments such as among workstations in 

an organization, but breaks down under more 

coordinated login behavior.  

Since a cluster task is typically executed on a different 

node than it is launched, the startup process involves 

one or more queries for user credentials. A parallel 

application started on a cluster will therefore cause 

nodes to perform a storm of lookups for passwords and 

other user-specific information in a short, or nearly 

instantaneous timeframe. A parallel job startup in effect 

resembles a denial of service attack on a NIS master, 

with worse effects for a secure service due to its per-

query encryption burden. In predictable manner, a 

centralized protocol cannot cope with such an attack, 

leading to a crashed or unresponsive service as many 

administrators have found first hand.  

In this paper we present a novel system called 411 that 

provides secure and scalable password service to a 

tightly coupled set of nodes. The 411 protocol as 

described here has served for several years as the 

primary password distribution system in the Rocks 

cluster distribution [4] and is used on hundreds of 

computational clusters worldwide [10]. While intended 

for passwords, we show that 411’s robust structure is 

applicable to a wide range of files. 

To overcome the performance bottleneck in large 

systems, 411 aggressively replicates files on all nodes.  

Replication addresses the denial of service pattern of 

parallel queries because lookups are satisfied locally, 

without communication with a central server. This file-

based technique moves the service burden from lookup 

time to data-update time, which is more tractable from a 

scalability standpoint. Our protocol secures data by 

encrypting files with a shared key on all nodes. This 

lightweight method eschews computationally-intensive 

secure tunnels for an encrypt-once strategy similar to 

sending an encrypted email to a mailing list.  

From a correctness standpoint, our file-based system 

must carefully manage data consistency, and while not 

susceptible to lookup storms, 411 is somewhat affected 

by file size, which we examine in the experimental 

section. Since the absence of a password file can leave 



  2 

a node unusable, fault tolerance is of primary concern 

throughout the design and analysis of the system. 

Given a defined security model we analyze the 411 

protocol’s resistance to a strong malicious attacker, 

beginning with the key distribution process and 

covering each protocol transition. Using formal 

techniques we prove 411 correct in the face of specific 

faults, a result buttressed by experiments of the protocol 

in action, where we force failures to occur and observe 

its recovery. We further present quantitative evidence 

that 411 provides data consistency on par with existing 

systems, and performance with large files.  

The rest of this document is organized as follows. In 

Section 2 we examine related systems and protocols. 

Section 3 presents the goals and threat models used in 

our work, followed by the 411 design, including the key 

distribution system. Section 4 analyses our design from 

both a security and fault tolerance standpoint. Section 5 

outlines some usability features of the protocol, and in 

Section 6 we present the experimental setup, and a 

discussion of the results. We give areas of future work 

in Section 7, and Section 8 concludes our paper. 

1.1. Performance Requirements 

Before presenting related work we further characterize 

the performance requirements of our environment.  

Computational clusters often run either parallel jobs or 

“bag of tasks” workloads. Both stress popular password 

distribution systems in novel ways. Parallel jobs incur a 

denial of service query pattern on a centralized 

password system, due to the rapid and coordinated 

requests for user credentials from many nodes (figure 

1). While enforcing a staggered job startup would 

ameliorate this problem, we do not want to impose such 

restrictions on the application or the job-launcher.  

Bag of tasks workloads involve many independent 

calculations that run on a single or small number of 

nodes. Their task components are often short lived but 

numerous, perhaps a parameter sweep of a simulator. In 

this case as soon as one task completes, the next will 

start, perhaps on a different node. On a large busy 

cluster we can imagine many users running 

concurrently, while the scheduling system maps each 

new job to an available node.  

In this example, not even a friendly staggered job-

launcher can aid the password system. Together, the 

tasks may generate a torrent of user-credential requests, 

and being independent cannot coordinate or consolidate 

their query pattern. Asking the scheduler to space task 

assignments in time is wasteful.  

Because of these usage patterns we hold that any secure 

password system in such a tightly coupled environment 

must provide robust and scalable service natively, 

without timing restrictions on its use.  

2. Related Work 

This section examines the most prevalent existing 

strategies for password service in a network. The two 

approaches most often used are centralized designs, 

those that employ replicated file databases. 

2.1. Centralized Systems 

All centralized protocols are susceptible to lookup 

storms as defined above. We identify popular systems 

that share this limitation. 

NIS. The Network Information Service, once YP, is the 

de facto standard for password propagation. NIS 

centrally serves a text file such as /etc/passwd by 

hashing its lines into a map. Clients contact a NIS 

master whenever they need user information, providing 

a file-specific key and receiving the value in map[key]. 

While it is simple to setup and has excellent support in 

Unix and Linux, its shortcomings are security and 

scalability. NIS has weak security: it is easy make 

clients believe in a fake master [6] and password tokens 

are clearly identifiable across the network, making them 

vulnerable to a dictionary attack. However the system 

interface of NIS is quite useful, and has been copied in 

411.  

Slave NIS masters are designed to aid scalability of the 

protocol by mirroring the full database of the prime 

master. However experience has shown that even slave 

masters do not provide sufficient performance in a 

reasonably sized cluster [2]. Since slaves synchronize 

Everyday DoS

Master
slaveslave

 

Figure 1. Parallel login behavior in a cluster 
resembles a denial of service attack for a 

centralized password system. Some queries 
may fail (empty arrows), generating more 
traffic. 



  3 

with the master in terms of whole files, the limit where 

every node is a NIS slave is essentially a basic file-

replication strategy. Consistency between masters is 

maintained by cron job run every few hours. 

NIS+ [12] is an extension to NIS. It adds much better 

security and some fault tolerance, but the protocol’s 

propriety design has precluded its widespread adoption.   

LDAP [14] is distributed service for user information 

storage and retrieval. It is structured as a general 

hierarchical database for any mostly-read data, and is 

designed to work across organizational boundaries. 

Recent implementations such as OpenLDAP [16] 

provide security via TLS tunneling. LDAP as a protocol 

is also not known for its performance [15].  

Kerberos is a mature and secure protocol for user 

authentication.  While difficult to setup, its security 

structures have been widely tested and proven.  

Although the service burden is more complex than NIS, 

Kerberos always requires a query-response between a 

client and server at login time and therefore we classify 

it as a centralized system. Kerberos allows for slave 

servers like NIS. Master and slaves synchronize with a 

periodic cron job, often at 15min intervals [8]. 

2.2. Replicated Databases 

Rsync [1] is a popular and efficient file synchronization 

tool that uses hash functions to keep files updated by 

only sending differences to clients. Like 411, Rsync 

could be used to replicate the password file on all 

clients, and can support encryption via ssl tunnels. The 

protocol cannot effectively maintain encrypted files 

since its difference method will face a large edit 

distance for every file change. Rsync also has no 

automatic alert mechanism.  

CFengine [18] is a rich configuration system for a set of 

heterogeneous nodes. It can distribute files to many 

clients, and can be directed to update files with a master 

server. However CFengine does not provide encryption, 

nor is optimized to keep a file consistent between 

nodes.  

3. Design 

This section gives the design goals and assumptions, 

followed by the relevant structures of the 411 design. 

3.1. Goals 

411 seeks to provide sensitive user information to a 

potentially large set of nodes that may make queries all 

at once. This mandate leads to several design 

considerations. 

Security. 411 will distribute sensitive information that 

directly affects the security of the cluster. It therefore 

must be secure against common and reasonable attacks. 

Scaling, Performance. The system must be scalable 

under lookup load: it may see N near-simultaneous 

lookups, where N is large. At no stage in the protocol 

may any node overwhelm its processing capability, 

regardless of the number of clients N. 

Consistency, Usability Nodes must be able to retrieve 

reasonably consistent and accurate user information, 

given the rate of change typical for this type of data.  In 

addition, the system must be at least as usable and easy 

to administer as current alternatives.  

3.2. Threat Model 

The 411 service is run on a strongly connected graph, 

where a node can reach any other node. We assume an 

adversary that can listen to all traffic on the network 

and inject arbitrary messages. All benign nodes operate 

correctly, and do not mistakenly send badly formed 

messages. 

Our security goal is to prevent an adversary from 

discovering the plaintext contents of any 411 message, 

and to protect against denial of service attacks on the 

master node. Finally, client nodes can become 

malicious, leading to degraded but not catastrophic 

security guarantees. 

The network that connects nodes can lose messages, as 

one would expect from a stressed packet switched 

network [18]. This may be viewed as another type of 

adversary that models the best effort delivery behavior 

of a standard IP network. Specifically, packet loss is 

message-oblivious [5], and we assume a random 

uniform loss of some percentage of all sent messages. 

This will affect analysis of our UDP signaling. 

3.3. Performance 

To escape the possibility of a master node bottleneck, 

411 aggressively replicates login files. 411 deposits a 

copy of the password file on each client, so every node 

always has the most current version on its local disk. 

Therefore lookups of user credentials during a storm are 

embarrassingly parallel: all nodes consult their local 

password file without any communication with the 

master node. 

In addition to replication for lookup scalability, 411 

must provide encryption for security. The method used 

by OpenLDAP and Rsync is to tunnel all queries 

through secure SSL/TLS channels [20] . 

SSL/TLS transfers are computationally intensive, 

requiring up to ten times as much processing for a given 

flow as a plain TCP session [19],. In our preliminary  



  4 

implementation this overhead was so dramatic that 

using HTTPS as the transport mechanism in 411 was 

quickly rejected. We chose an alternative method based 

on plain HTTP transfers.  

We could have chosen a multicast tree to distribute the 

files themselves, to save the cost of moving an identical 

file across the network to each client. However we 

rejected this transport mechanism for several reasons. 

First the simplicity and robustness of HTTP 

implementations allowed us to reason more effectively 

about the correctness and fault tolerance of our 

protocol. Second, we desire to extend 411 to the wide 

area in the future where a reliable multicast tree, while 

not impossible, would be a liability [28,29]. 

3.3.1. Encrypt Once 

411 differs from other methods in that it globally 

encrypts data rather than using per-session secure 

tunnels. Imagine if members of a large mailing list all 

shared a private key. We could protect a message sent  

to this list by encrypting it once with our copy of the 

key, then sending the ciphertext through the plain mail 

system. 411 uses the same strategy. All nodes share a 

key, and the master node encrypts files once per version 

instead of once per version-client as tunneling requires.  

In addition to the 256-bit shared key for symmetrical 

file encryption, the master keeps a 1024-bit RSA key 

pair for signatures, the public key of which is held by 

clients. A 411 file is encrypted with the shared key, 

signed with the master’s private RSA key, and served 

via plain http to all clients that request it. It is the 

client’s responsibility to decrypt and verify the file after 

transfer. Therefore the burden of a file’s encryption is 

well distributed, O(1) for all nodes. If we instead used 

secure tunneling, the burden would be O(1) for clients 

and O(N) for the master.   

The observation is that since we always transfer the 

whole database, responses from the master to client 

queries are the same for a given file version. As the 

plaintext is unchanged, we only encrypt it once. This 

strategy could be applied to existing master-slave 

synchronization protocols used by Kerberos and NIS+ 

as well. 

3.3.2. Alerts 

To reduce inconsistency, we signal all clients on a file 

change. When a file on the master is altered, the master 

sends an alert multicast to the cluster containing a URL 

to the changed file. On receipt of an alert, a 411 client 

initiates an http transfer (figure 2). Alerts are sent in 

Ganglia compatible format [21,27] and can be 

monitored and tracked like any other metric (figure 4). 

Like other protocols in Rocks [18], 411 uses multicast 

signals so a master does not need a priori knowledge of 

its clients: only possession of the shared key delineates 

cluster members. 

True Denial of Service attacks are easiest and most 

effective when a small effort on the part of the attacker 

leads to a large response in the system. Forging or 

replaying a stored 411 alert message would easily affect 

a large response: all clients would immediately ask for 

the new file from the master.  

To protect against this risk, all alerts from a master are 

signed to prove their authenticity. To prevent replay 

attacks, alerts contain a strictly increasing number 

(currently a timestamp). This token and the URL are 

signed with the shared key, which forms the whole of 

the alert (figure 4). Clients ignore all alerts that do not 

verify, and keep a record of the latest timestamp 

received from every master, and previously seen are 

ignored. Finally, we know the URL and master address 

is trustworthy because a valid signature protects it.  

As a scalability optimization, clients randomly stagger 

their retrievals on an alert receipt. Clients use heartbeats 

from ganglia agents on all nodes to establish a size 

estimate of the cluster. This estimate is used to calibrate 

a small random backoff timer. On receipt of an alert, a 

client backs off slightly before retrieving the file in 

order to stagger the load on the master server. This 

timer is set at random(0, N/100) in our implementation, 

where N is the size estimate.  

3.4. Initial Key Distribution 

The initial shared key distribution is not handled by this 

protocol. While the shared key could be manually 

Master

alert(url) !

Master

2.1.

UDP multicast

TCP (http)

 

Figure 2. 411 design. When a file has 
changed, the master constructs, signs, and 
multicasts an alert for it (1). On receipt, 

clients verify the signature, and retrieve the 
file from the master via http (2). 



  5 

placed on clients using a secure file transfer tool, such a 

method relies on the absence of human mistakes during  

the process. We prefer to automatically place the shared 

key during node installation using the Rocks system.  

Rocks employs a bimodal security structure to control 

node discovery. When adding new nodes, a human 

places the frontend into an insecure mode where it will 

serve entrance requests from any node. In this phase 

such a request will yield a kickstart file containing 

initialization instructions along with the 411 keys, 

secured with SSL/TLS. Once new nodes have been 

discovered, the frontend is returned to a safe mode. 

Now only registered nodes can obtain the kickstart file 

as proved by a signed certificate given during the initial 

installation.  

The standard practice is to partition the frontend from 

the public network before placing it into discovery 

mode. This strategy relies on a temporary trust that your 

local-area network is free from attack during this phase. 

We plan to augment this temporal strategy with a 

physical USB-key method in the future. 

3.4.1. File Meta Data 

Before encryption, the master adds several HTTP-style 

headers to the file describing its fully-qualified name, 

permissions, type, and owner/group ids.  This 

information is encrypted along with the file’s contents 

to provide a secure, trusted record of its meta-data. Like 

HTTP, 411 allows implementations to add custom 

headers as needed.  

3.5. Protocol 

411 (informal): When an interesting file changes, the 

master node encrypts it with the shared key, signs it 

with the master private key, and stores it on the server. 

The master then constructs an alert and sends a series of 

copies using either UDP multicast1 or normal IP 

broadcast. On receipt of an alert, clients retrieve the file 

if appropriate. On a polling event clients retrieve all 

files available from their favorite master. 

411 (formal):  Pseudo I/O Automata format 

Statesi:  
411Files, a set of filenames, non-empty on master. 
Stamps, a hash table of real numbers indexed by url. 
Scores, a hash tbl of saturating counters, indexed by ip. 
R, a queue of alerts. (all initially !) 
 

Transitionsi: 

changed(f), f " 411Files:  Input 
 encrypt file with shared key, sign with RSA-priv 
 send alert to all i 
 
recv-alert(aj):   Input 
 verify signature 
 if Stamps[url] ! ts(a): return 

 if i = j (we sent the alert): 
  add a to repeat queue R 
  return 

else: 
  get(url(a)) 
  Stamps[url] = ts(a) 

increment Score[ip(a)] 
  
repeater:    Output 

Enabled on a random periodic interval with 
expectation 10s.  
" a # R:  

send a to all i 
remove a from R if older than 1 hour 

 
poller:    Output   

Enabled on a random periodic interval with 
expectation 5hrs. 
m = master with highest score 
" f #  List(m): 

 get(url(f)) 

                                                
1 Multicast overlays may be used to extend the alert reach to 

the wide area, however such use is not examined here. 

-----BEGIN 411 MESSAGE-----
wkkZ4x8PNg36ZOZwXJEBIdhGOdVES4zRVX+h+ip0ruGVH8Te9SK/bEdXX7aCVk1+sVeW8CtOasL7
JXDrFa6LE+Z4NLuPRsjw8HUrMDUIUC+862huRe6tI2lT9IwDojcm5Lif7GXTkh9nMhaLJgvFW31b
4pQVEltE1mTYYru3Tv0=

jEEE3LLhKQ/rBffQoFmC249skFaEh+6ovRzMii2/Oqxe2A5c2z4fXkzNLPdU1QxdBRkrXh5mvgfG
lWiVWiUTcm8C2jzzoJAhNBvTJ2h3Lw7g6wuA7TNhCaCsM8iPMqzQ8TqzUM22eAUumed0U17i/Wif
Vi3OtBDlb98Iapx4xbBkYC9O6ICCFMGjTjsk4rkTc0AZOhxR6oHgY+PpntOQSi+SQ4Trr14XoUAw
sLtOhemqBc5JJb6kOkmXMVnr/jEJxzx9WWhRvYGsUM8x42dE4neC28jxaXl5TtrO4ywjkcTAR/KU
7dXpsNBlPRbEf0XCGzM8elzaaTfHyLfJwsCoVxmIWdSymF5HVUc+2lUfpfMIlAhVTqCWJ1qZbIB4
...
s/tKuNCZXsknBsToxIUceOSj2INgkXfcHeg0iVoBCOMuy3rZxj8bDEXIbT+OsMYVhqD6tqmA+bB6
-----END 411 MESSAGE-----

# $411id: /etc/passwd$
# Retrieved: 24-Jan-2005 15:40
# Master server: 192.168.69.1
# Last modified on master: 24-Jan-2005 13:24
# Encrypted file size: 2.4K bytes
# 
# Owner: 0.0
# Name: /etc/passwd
# Mode: 0100664
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
...  

Figure 3. A password file in encrypted (top) and 
decrypted form (bottom). Master serves encrypted 

file over http. Clients perform decryption. 411 
headers for meta-data are visible in the comments 
of the decrypted file.  The encrypted form shows 

the signature and ciphertext paragraphs. 

<METRIC NAME="411alert" VAL="http://10.1.1.1/411.d/etc.passwd 1106614104.16
oC0rG9r07IOxOO4o/1YY79Mim8Sm7oPTWnfPzOoaoEJhTxySl3vvvrbsyv2iKe9SViCQIgvSLMeS
vA3Ccqcqa27fDe4Y8c8EpLXWCRTHKPXwRcmyWM6VLPRHWEzp1/MQ7eHmYKqJxt0wZl7X/ng2Ws/J
K7dEyeswkQEgivWMj/Y=
" TYPE="string" UNITS="" TN="14" TMAX="20" DMAX="20" SLOPE="zero" 
SOURCE="gmetric"/>  

Figure 4. A 411 alert multicast message in Ganglia 
XML format, telling all recipients the file 
‘etc.passwd’ has changed on this master. The 

java-style URI is to prevent naming collisions only, 
meta-data is encrypted in the 411 file itself. The 
URL and timestamp are signed to prevent replay 

and forgery attacks. 



  6 

 
The internal method get(url) retrieves file at url, decrypts 
it and verifies the signature, then writes file to local disk. 
If an error occurred, get() decrements the master’s 
score, then simply causes the action to end. 

4. Analysis 

In this section, we explore the methods used to secure 

information in 411, and analyze its fault tolerant and 

consistency properties.  

4.1. Attacks and Defense 

Our design can withstand various types of attacks on 

the system. We note that innocuous activity such as 

interference from other valid clusters may cause attack 

patterns as well. 

Potential security attacks can come in three forms: 

compromised keys, intercepted transfers, and injected 

traffic. The automatic nature of our system requires that 

no passwords be manually entered, therefore only 

filesystem permissions protect the shared key.  We also 

consider the case where a client node has been 

compromised and itself becomes a malicious agent.  

Guessing the 1024-bit RSA master private key, which 

signs all files and alerts, is computationally infeasible 

by the Diffie-Hellman assumption [22]. Guessing the 

256-bit shared key is even harder, since no public key is 

available to guide the search. We feel our use of 

cryptographically safe random number generators 

[23,25] offer sufficient security against guessed keys 

and do not require further analysis here. 

Intercepted http transfers do not reveal information 

because all file contents is encrypted as a unit. 

Although passwords are always kept encrypted, we 

prevent dictionary attacks by making it infeasible to 

delineate passwords tokens in a 411 transfer stream.   

Injecting packets into the network is another possible 

attack. Imagine a malicious attacker Darth. Darth 

cannot forge viable alerts since he lacks the master 

private key. Since clients ignore all alerts without a 

“newer” timestamp than they have seen before, Darth 

gains little by replaying old but valid alerts. The most 

he can hope for is to fool nodes that have no state 

because of crashes, etc. The master sends alerts 

periodically to catch-up recovering nodes.  

If Darth convinces the Rocks frontend that he is a valid 

cluster member he will obtain the shared key. While 

such a malicious client can obtain the plaintext of 411 

files, without the master key, the more serious case of 

subverting the entire cluster with a believable password 

file is impossible. Defense against a compromised 

master, however, is outside the scope of our model. 

4.2. Consistency 

The 411 system is a replicated database of files. The 

replication strategy yields fundamental scalability, but 

relies on fault-tolerant progress towards consistency 

after updates. If a login file changes, it takes some time 

! to successfully deliver the new version to clients. 

During ! the system is not consistent: some nodes may 

have the newest version, some not. 

Existing protocols with slave servers such as NIS and 

Kerberos also allow periods of inconsistency when the 

master has more recent information than slaves. Both 

systems perform the synchronization operation using a 

cron-like periodic process with a typical interval on the 

order of minutes [8,11,12]. We would like 411 to 

maintain at least this level of consistency across the 

cluster.  

Instead of relying on a periodic process, we use 

multicast UDP messages to speed consistency progress 

during transitions. However UDP broadcast is not 

reliable, and the chance of an error goes up with cluster 

size.  The 411 master therefore repeats new alerts on 

the network periodically. As a final safeguard to ensure 

eventual consistency, each client maintains a polling 

agent that retrieves all available files from the master at 

a low frequency interval, currently 5 hours. 

4.2.1. Fault Tolerance 

We would like to show 411 guarantees all nodes will 

receive the current version of a file with an 

overwhelmingly high probability, even when subjected 

to faults from our model. Changes always originate on 

the master node; just after a change to a 411 file f, all 

clients are in the inconsistent set which we will call If . 

When a node successfully receives the file f we remove 

it from If and add it to the consistent set Cf. Perfect 

consistency occurs when set If is ".  

The sets are disjoint, so I # C = ". The argument for 

consistency under faults is in two parts: 

A. All nodes eventually receive the broadcasted 

alert for f 

B. All nodes eventually get the file and decrypt it, 

increasing the set of consistent nodes. 

To show (A), we note the 411 master repeats alerts 

frequently to overcome the inherent unreliability of the 

UDP multicast medium. This strategy, shared by the 

Ganglia protocol, ensures that with a high probability 

all nodes eventually receive the alert for f. Since the 

possibility of loosing an alert is identical for all repeats 

(by our network loss model), we may use the binomial 

distribution, shown as b(x) below, to predict the chance 

a single node receives at least one alert. The random 

variable X is the number of received alerts on a node: 



  7 

P
one

X !1[ ] =1" b(1),   (1) 

b 1( ) =
1

n! 
" 
# $ 
% 
&  p 1' p( )

n'1 

where n is the number of alerts sent, and p is the 

probability of receiving a single alert. The probability 

of all nodes receiving at least one alert is Pone raised by 

the number of clients N: 

P
all
X !1[ ] = P

one
X !1[ ]( )

N   (2) 

In our implementation repeats are sent at a random 

interval with an expectation of 10 seconds. The repeater 

task removes any alert older than one hour, so the 

average number of alerts sent per file version is 360. 

Every alert fits into one Ethernet packet, so the real 

chance of loss is low for most networks. However the 

equations above predict 411 will deliver at least one 

alert to all nodes even when subject to very high loss.  

On a 60 node cluster, even if 50% of all sent alerts are 

lost, this model predicts we need only 30 repeats to be 

99.99999% (five nines) sure all nodes receive at least 

one alert. We observe by (2) that larger clusters need 

more repeats, but our approximately 360 alerts are 

mathematically adequate for thousands of nodes. 

While we are confident all nodes will receive the alert 

signal, to show (B) we must consider failures in the 

HTTP GET pathway. We expect faults during the http 

file retrieval phase, since requests come in bursts and 

our web server enforces finite resource limits. If apache 

allows only n outstanding requests, the n+1st will get no 

response, perhaps timing out. To handle this case we 

use our alert fault-recovery mechanism for two 

purposes.  

Clients only update their timestamps on a retrieval 

success: any failure in the file transfer is treated like no 

alert was received at all.  The client will try again on 

the next alert that arrives, effectively using the alert 

stream as an end-to-end failure recovery mechanism 

(figure 2). Therefore by our design if (A) holds (B) will 

hold as well. 

We have predicted the fault tolerant mechanisms of 411 

are sufficient for correct operation to our standards. In 

the experimental section we provide quantitative 

evidence of this result.  

5. Experiment 

Our quantitative examination of 411 seeks to establish 

claims predicted in the analysis. First that all nodes 

reach a consistent state when subject to alert (UDP) and 

get (TCP) failures. Second that uptake time (the 

inconsistent window after a change on the master) is 

reasonable given the random behavior of the alert  

repeater. Finally we establish reasonable operation 

when we increase the size of the login files.  

While the 411 poller task is present for final fault-

tolerance in the system, all pollers are disabled during 

these experiments. 

5.1. Setup 

We run the experiments on 61 nodes of the Rockstar 

cluster [26]. Nodes are approximately homogenous, 

with dual 2.8Ghz P4 processors and 2GB RAM. The 

network consists of a Gigabit Ethernet tree with two 48-

port switches connected via a 4-port trunk. The cluster 

runs the Rocks software version 3.3.0. The 411 service 

is configured with the cluster frontend serving as the 

single master for the 60 clients.  

We measure 411 file retrievals using a ganglia metric 

sent from clients on a success. These signals are 

measured on the frontend by an agent listening directly 

to the ganglia multicast channel. While these signals are 

themselves subject to failure, we treat such faults as 

indistinguishable from faults in the 411 processes 

themselves. 

Other than the operation of 411 and several standard 

Linux daemons, no computationally significant tasks 

were run during the experiments.  

411 Fault Tolerance

Alert stream for f
Master

client

fail

failHTTP GET(f)

multicast udp

Alert stream for f
Master

client

f ok

HTTP GET(f)
multicast udp

123

123

 

Figure 5. 411 fault tolerance. When a file f 

changes, the master sends a stream of identical 
alerts on the multicast channel. We see two types 
of failures (top): the first alert is lost in the UDP 

medium, the second leads to a failed file retrieval. 
On the third alert the client successfully retrieves f 
(bottom), and ignores the remaining alerts. 



  8 

5.1.1. Operation under Faults 

In this experiment we change multiple files on the 

master and plot when nodes retrieve each file. Each 

client requests 10 files from the frontend web server, 

which translates to approximately 600 requests in under 

1 second (figure 5). We expect to see the web server 

enforce its resource limits. 

In this process we mark time zero, then touch 10 login 

files listed in the key of figure 5. We then run the 411 

Makefile, which encrypts and sends an alert for each 

file sequentially. This sequence of actions mimics 

adding a real user to the cluster but with more files 

changed.  

5.1.2. Average Uptake Time 

Here we characterize the uptake time of 411 over many 

trials. We repeat the first experiment several hundred 

times and how long until all nodes have successfully 

synchronized.  Since the alert stream is the bottleneck 

to completion, we show the results in a histogram to 

characterize its random behavior. 

Figure 6 gives the histogram for four cluster sizes, 

ranging from 8 to 60 nodes. Two hundred uptake cycles 

were run per size. We introduced no message loss 

during this experiment, other than what naturally 

occurred in the network.  

5.1.3. Uptake Time with Message Loss 

To correlate actual behavior with our predicted 

performance we artificially lose messages here 

according to our network model [18]. Clients simulate 

alert loss by flipping a random uniform coin every time 

an alert message arrives. If the coin is tails, the message 

is “lost” and the client takes no action. On heads the 

clients behave normally. 

Since the network itself may lose messages we note that 

the loss in the system is at least 50% and perhaps more. 

Figure 7 presents a histogram of the results as in the 

previous experiment, but with 30-second buckets to 

better show the longer and more varied times.  

5.1.4. Large Files 

In this experiment we measure 411’s ability to 

synchronize when the changed file is large. Unlike 

previous runs here we only change a single file on the 

master. The file sizes range from several kilobytes 

(typical for a password file), to ten megabytes as a 

pathological case (figure 8).  

5.2. Discussion 

The results of the first experiment show the fault 

tolerant mechanisms in action. Figure 6 shows the burst 

of http accesses that force the web server to invoke its 

resource limits. The Makefile sends alerts sequentially, 

leading the first files (auto.home, auto.master, ) to 

finish contiguously as the 60 nodes can fully retrieve 

several files immediately. The remaining files must 

wait for another alert to finish their synchronization. 

The Apache server on the master node allows no more 

than 150 concurrent unfinished accesses at a time. After 

this limit nodes begin to experience failure as seen in 

the flat curves of figure 6. We observe partial success in 

this first phase as early clients finish their transfer and 

free resources, but clearly the alert that arrives in the 

12th second leads to important retries. By 16 elapsed 

seconds all files have been successfully retrieved and 

the cluster is consistent. 

The second experiment shows the distribution of many 

such runs. We know from the first experiment the 

repeat stream is the bottleneck to completion. The alert 

task on the master is calibrated to send repeat alerts at a 

random uniform frequency with an expectation of 10 

seconds. Figure 7 shows a normal distribution with a 

mean of ten seconds as we would expect, with a tail to 

130 seconds. The smaller clusters often finish 

completely on the first alert, as is evident by the taller 

first bar representing synchronization within 0-10 

seconds. 

At worst nodes take three minutes to fully synchronize. 

This compares well with NIS and Kerberos, which 

commonly synchronize slaves with a 15 to 60min cron 

job. The inconsistent interval in 411 is not trivial, 

however, and has implications for dynamic, on-demand 

user creation. 

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14  16  18

No
de

s 
Sy

nc
he

d

Time (s)

411 Files Uptake vs Time (id=37)

etc.group
etc.file

etc.auto..net
etc.services

etc.rpc
etc.auto..home

etc.auto..master
etc.passwd

etc.shadow
etc.auto..misc

 

Figure 6. File synchronization in 411.  At time zero, 
ten files are changed and alerts broadcasted. 

Resource limits on the master HTTP server cause 
failures visible in the flat curves after 4s. The 
repeated alert that arrives in the 12

th
 second 

effectively picks up the remaining clients. This graph 
shows the short response time of our protocol and 
its tolerance of HTTP failures. 



  9 

In the third experiment 411 operates under stress from 

50% alert message loss. Nodes take longer to finish in 

this case, with a mean of several minutes as seen in 

figure 8. However, all runs complete, and every client 

retrieves the files without failure.  

In our analysis we predicted that 30 repeats would be 

necessary for all clients to receive at least one alert. We 

expect 30 alerts have been sent by time 300, and the 

results show a majority of clients have finished by this 

time. We attribute the fact that less than 99% have 

completed to HTTP failures that require clients to 

receive more than one alert. 

The different peaks in figure 8 show that large clusters 

take longer to synchronize than small ones. While we 

never expect to see 50% message loss in a real cluster, 

the stress of this experiment illuminates its operation in 

a larger environment. The result shows that 411 uptake 

time is related to N. While this window may stretch 

beyond our five minute goal for very large clusters, we 

argue this experiment shows the protocol will continue 

to perform within useful bounds. 

From the results of the fourth study it is clear that 411 

on this hardware can achieve consistency of a single 

file in less than a minute regardless of its size. However 

the variation in uptake time (figure 9) even with our 

small cluster of 60 nodes is significant. We note that 

411 may not be appropriate for synchronizing very 

large files across the cluster.   

Finally, in the 10KB file (marked with ‘x’ points in fig 

9) has a tail indicating some straggler nodes did not 

retrieve this file until two seconds after receiving the 

alert, well past the maximum backoff time of 0.6s. We 

attribute this tail, and the non-linear 10MB curve, to 

normal operating system variations on the master that 

cause the apache web server to occasionally respond 

more slowly than normal.  

6. Usability 

This section addresses how 411 is used in a real cluster. 

6.1.1. System Interface 

For the success of 411 we must also provide an 

interface to the larger system that is easy to use. Like 

NIS, we employ a Makefile that automatically 

generates encrypted versions of login files such as 

/etc/passwd, and /etc/shadow and alerts. On Rocks 

systems the useradd binary invokes this Makefile 

during account creation and modification. Therefore in 

large part system administrators do not know they are 

using 411 rather than NIS.  

In real world use, there may be cases where the network 

has been partitioned for some time before being healed. 

In this case entire 411 alert streams may be lost and 

partitioned nodes will be inconsistent with the master. 

We have provided mechanisms to quickly force all 

alerts to be resent from the master, or have the poller 

run immediately on affected nodes. The ability to react 

to such types of complete network failures has proved a 

useful in practice. 

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

%
 o

f 2
00

 ru
ns

Ten files synchronized (s)

411 Histogram of Convergence Time (id=47)

N=8
N=16
N=30
N=60

 

Figure 7. Histogram of uptake time. Ten files are 

changed and synchronized as in figure 6, but 
process is repeated 200 times. The bars labeled 
10 show what percent of runs took between 10-

20s to finish for each cluster size. We see a 
normal distribution with a mean of 10s as 
expected. This chart further supports our claim 

that 411 has acceptable response time. 

 0

 5

 10

 15

 20

 25

 0  30  60  90  120  150  180  210  240  270  300  330  360  390  420  450  480

%
 o

f 2
00

 ru
ns

Ten files synchronized (s)

411 Histogram of Convergence Time, with 50% Alert Loss (id=52)

N=16
N=60

 

Figure 8. Histogram of uptake time with alert loss. 
Clients simulate message loss by randomly 

discarding 50% of received UDP alerts. A 16 and 
60 node cluster synchronize after the master 
changes ten login files as in figure 6. Uptakes are 

noticeably slower, but all are without error. This 
result shows the correct operation of our protocol 
under extreme stress. 



  10 

6.1.2. Multiple Masters, Backoffs 

If multiple masters are present, 411 clients will 

automatically register them (via their alerts) and 

randomly choose one to poll from. Clients respond 

directly to alerts, as they are indications of an alive 

master. We do not provide a special mechanism to keep 

multiple masters synchronized, however a tree of 

masters has been used in practice.  

Clients keep a saturating counter for each master server 

they know. This score counter represents the health of a 

master server and is incremented on a good GET, and 

decremented on failure. Clients use their local score 

counters to choose a master to poll from, enabling a 

steady movement to the most healthy master without 

manual intervention. 

6.1.4. Groups 

Groups are a facility to maintain a 411 file between the 

master and a subset of clients. Membership in a given 

group is determined by a configuration file on the 

client, and therefore is delineated by choice only. This 

convenience feature names groups with a path, such as 

/Compute/Rack1, which is sent with every alert and is 

visible to pollers. Clients locally determine whether a 

file is interesting based on its group designation. 

Groups have inheritance semantic that full paths imply 

interest in their prefix. For example a compute node 

interested in group /Compute/Rack1 will also choose 

files in group /Compute. The group facility is 

implemented as directories in the URL for easy listing 

and retrieval. 

7. Limitations and Future Work 

411 makes no effort to work well across administrative 

boundaries. Unlike systems such as LDAP, 411 

currently has no provision for merging data from 

multiple master authorities. 

While using a multicast overlay network to extend the 

alert reach is theoretically possible, we leave such 

efforts to future work. 

8. Conclusion 

The task of distributing sensitive information across a 

set of N nodes has no good solution in tightly coupled 

high performance environments. Existing methods are 

inherently not scalable, and strategies to add security 

with secure tunneling cannot provide sufficient 

performance due to their computational burden. In 

response to these shortcomings, we presented 411 as a 

secure, scalable, and fault tolerant password service. 

We have shown how 411 removes the query time 

bottleneck from lookup storms with aggressive 

replication, efficiently distributes encryption load. We 

show that the protocol is correct and robust to failures, 

and remains strong under various types of malicious 

attacks. We presented evidence of our performance and 

scalability claims on a 60-node cluster. We demonstrate 

that 411 maintains at least as much password 

consistency as existing systems we studied. Finally we 

characterized the expected performance of the system 

for various file and cluster sizes. 

While this work is an early foray into the area of high 

performance security for password systems, the 

theoretical, experimental, and real world experience 

with 411 establishes it as a useful system for 

distributing user credentials to a set of nodes. 

Acknowledgements 

This paper has benefited from the insight and critique 

of many people. Thanks to Greg Bruno for his 

invaluable support and feedback, and to Matt Massie 

for his help with replay attacks. We would also like to 

thank the anonymous reviewers for their helpful 

comments. Most of all we must thank the countless 

Rocks users that struggled through early and less fault-

tolerant versions of 411 on their systems. 

All code necessary to re-create experiments in this 

paper is freely available upon request. 

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12

No
de

s 
Sy

nc
he

d

Time (s)

411 Single File Uptake vs Time (id=33)

1K
10K

100K
1M

10M

 

Figure 9. 411 uptake performance with various 

file sizes. At time zero a single file is changed on 
the master. When 60 nodes have retrieved the 
new version the cluster is consistent. A typical 

password file is 10KB; the 10M run simulates a 
reasonable worst case. The initial flatness of the 
10M curve is the master’s encryption time. This 

experiment illustrates how file size affects 411.  



  11 

References 

1. A. Tridgell, P. Mackerras. The rsync algorithm. 

Technical report, Australian National University. 

http://rsync.samba.org. 1998 

2. A. Keller and A. Krawinkel. Lessons Learned While 

Operating Two Large SCI Clusters. In Proceedings of 

the First IEEE/ACM International Symposium on 

Cluster Computing and the Grid (CC-GRID). Brisbane, 

Australia. 2001 

3. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann 

Publishers. 1996. 

4. P. Papadopoulos, M. Katz, G. Bruno. NPACI Rocks: 

tools and techniques for easily deploying manageable 

Linux clusters. Concurrency and Computation: Practice 

and Experience, 15:707-725, 2002. 

5. B. Chor, M. Merrit, D. B. Shmoys. Simple Constant-

Time Consensus Protocols in Realistic Failure Models. 

JACM, 36(3):591-614, 1989. 

6. D. Hess, D. Safford, U. Pooch. A Unix network protocol 

security study: Network Information Service. Computer 

Communications Review, 22(5):24-28, October 1992. 

7. Hal Stern. Managing NFS and NIS. O’Reilly & 

Associates, Inc., 1991. 

8. Sun Microsystems. System Administration Guide: 

Security Services. Sun Documentation #817-0365, 

August 2003. 

9. J.T. Kohl and B.C. Neuman. The Kerberos network 

authentication service (version 5). Internet Engineering 

Task Force RFC 1510, September 1993. 

10. The Rocks Cluster Register. 

http://www.rocksclusters.org/rocks-register/ 

11. Sun Microsystems. System Administration Guide: 

Naming and Directory Services (DNS, NIS, and LDAP). 

Sun Documentation #817-2655, December 2003. 

12. Sun Microsystems. System Administration Guide: 

Naming and Directory Services (NIS+). Sun 

Documentation #816-4558, January 2005. 

13. J.T. Kohl and B.C. Neuman. The Kerberos network 

authentication service (version 5). Internet Engineering 

Task Force RFC-1510, September 1993. 

14. W. Yeong, T. Howes, and S. Kille. Lightweight 

Directory Access Protocol. Internet Engineering Task 

Force RFC 2251, December 1997. 

15. S. Fritzgerald. I. Foster, C. Kesselman, G. von 

Laszewski, W. Smith and S. Tuecke. A directory service 

for configuring high performance distributed 

computations. In Proc. 6 th IEEE Symp. On High 

Performance Distributed Computing, August 1997. 

16. The OpenLDAP project. http://www.openldap.org/ 

17. M. Burgess. A site configuration engine. USENIX 

Computing Systems, 8(2):309--337, 1995. 

18. F. Sacerdoti, M. Katz, G. Bruno. On Distributed 

Agreement for Clusters. SDSC Technical Report TR-

2004-1, 2004. 

19. C. Coarfa, P. Druschel, and D. Wallach. Performance 

Analysis of TLS Web Servers. In Proceedings of NDSS, 

2002. 

20. T. Dierks and C. Allen. The TLS Protocol, Version 1.0. 

Internet Engineering Task Force RFC 2246, January 

1999. 

21. F. Sacerdoti, M. Katz, M. Massie, D. Culler. Wide area 

cluster monitoring with ganglia. In Proceedings of the 

IEEE Cluster, Hong Kong, 2003.  

22. W. Diffie, M. Hellman. New directions in cryptography. 

IEEE Transactions on Information Theory, 22(6):644–

654, 1976. 

23. OpenSSL: The Open Source Toolkit for SSL/TLS. 

http://www.openssl.org. 

24. J. Callas, L. Donnerhacke, H. Finney, R. Thayer. 

OpenPGP Message Format. Internet Engineering Task 

Force RFC 2440, November 1998. 

25. The Python Cryptography Toolkit. 

http://sourceforge.net/projects/pycrypto 

26. The Rockstar Cluster. http://rocks.npaci.edu/rocks-

register/details.php?id=148 

27. M. Massie, B. Chun, D. Culler. The ganglia distributed 

monitoring system: Design, implementation, and 

experience. 2003. Submitted for publication. 

28. J. C. Lin and S. Paul. RMTP: A reliable multicast 

transport protocol. Proceedings of IEEE Infocom, pages 

1414--1424, Mar. 1996. 

29. B. Rajagopalan. Reliability and Scaling Issues in 

Multicast Communication. Proceedings of ACM 

SIGCOMM, 1992. 

 


